MATH 3110: COMPLETE ORDERED FIELD AXIOMS

ZACH NORWOOD

These are the things we're assuming about the real numbers **R**. In mathematical jargon, they amount to saying that **R** is a *complete ordered field* with **Q** as a *subfield*. It is not important that you know what those words mean in general.

First, we assume that we have binary operations + and \cdot on the real numbers. We also assume that for each real number x there is a real number -x called its *opposite* or *additive inverse*. We assume that for each real number $x \neq 0$ there is a real number $\frac{1}{x}$, called its *reciprocal* or *multiplicative inverse*. And we assume that there is an ordering \leq defined on the real numbers.¹ Finally, we assume that all the rational numbers are real numbers, including 0 and 1.

Field axioms. The following are true for all real numbers *x*, *y*, and *z*:

x + y = y + x	(addition is commutative)
x + (y + z) = (x + y) + z	(addition is associative)
x + 0 = x	(0 is an additive identity)
x+(-x)=0	(additive inverses)
$x \cdot y = y \cdot x$	(multiplication is commutative)
$x \cdot (y \cdot z) = (x \cdot y) \cdot z$	(multiplication is associative)
$x \cdot 1 = x$	(1 is a multiplicative identity)
if $x \neq 0$, then $x \cdot \frac{1}{x} = 1$	(multiplicative inverses)
$x \cdot (y+z) = x \cdot y + x \cdot z$	(multiplication distributes over addition)

Order axioms. The following are true for all real numbers *x*, *y*, and *z*:

$x \leq x$	$(\leq$ is a reflexive relation)
if $x \le y$ and $y \le x$, then $x = y$	$(\leq$ is a antisymmetric relation)
if $x \le y$ and $y \le z$, then $x \le z$	(\leq is a transitive relation)
$x \le y \text{ or } y \le x$	$(\leq is a total ordering)$
if $x \le y$ and $z > 0$, then $z \cdot x \le z \cdot y$	(multiplication and the order)
if $x \le y$, then $x + z \le y + z$	(addition and the order)

Completeness Axiom. Every nonempty set with an upper bound has a *least upper bound*, i.e., a supremum.

Date: January 29, 2019.

¹By convention, we define the strict ordering as follows: x < y iff $x \le y$ and $x \ne y$.