THE TREE REFLECTION PRINCIPLE AND RESHAPING

ZACH NORWOOD

Recall that the Tree Reflection Principle $TRP(\aleph_1)$, defined in [1], is the following assertion:

For all $X \subseteq \omega_1$ and all trees $T \subseteq \omega_1$ of height ω_1 , either T has a cofinal branch or $\{\alpha < \omega_1 : T \upharpoonright \alpha$ has no cofinal branch in $L[X \cap \alpha]\}$ is stationary.

Theorem 1. $\text{TRP}(\aleph_1)$ is equiconsistent with the existence of a weakly compact cardinal. In fact,

- (a) if κ is weakly compact, then TRP(ℵ₁) holds in the extension by the Levy collapse to make κ = ℵ₁; and
- (b) TRP(\aleph_1) implies that \aleph_1 is weakly compact in *L*.

Proof. (a) Let V[G] be the extension by the Levy collapse. Kunen showed that $L(\mathbb{R})$ -absoluteness for ccc posets holds in V[G], and in [1] it is shown that $L(\mathbb{R})$ -absoluteness for ccc posets implies TRP(\aleph_1). Alternatively, a routine Π_1^1 -indescribability argument shows directly that TRP(\aleph_1) holds in V[G].

For (b), suppose that $\kappa = \aleph_1$ is not weakly compact in *L*. By a theorem of Silver, this implies that there is a tree $T \in L$ of height κ with levels of size $< \kappa$ that has no uncountable branches in *V*. For this tree *T* and $X = \emptyset$, the principle TRP(\aleph_1) fails: since *T* is a thin tree, there is a club of $\alpha < \kappa$ for which $T \upharpoonright \alpha$ includes the first α levels of *T*. For such α , any node of *T* on level α defines a branch through $T \upharpoonright \alpha$, and this branch belongs to *L* since the entire tree belongs to *L*.

Definition 2. A set $X \subseteq \omega_1$ is said to be *reshaped* if every $\alpha < \omega_1$ is countable in $L[X \cap \alpha]$.

If there is a club of α for which α is countable in $L[X \cap \alpha]$, then X can be modified to be reshaped. (Mimic the argument at the end of the proof of Theorem 7.)

Reshaped sets are typically used in conjunction with almost-disjoint coding to "code down to a real."

Definition 3. Let *T* be a tree of height α . We say that *T* is *pruned* if $T \upharpoonright t$ has height α for every $t \in T$.

Date: September 2018.

The proof of the following lemma is routine.

Lemma 4.

- (a) If *T* is a pruned tree, then a club of its subtrees are pruned.
- (b) If *T* is a pruned tree of height α and α has countable cofinality, then *T* has a cofinal branch.

Theorem 5.

- (a) If there is a reshaped subset of ω_1 , then for every pruned tree *T* on ω_1 there is a set $X \subseteq \omega_1$ such that $\langle T, X \rangle$ witnesses the failure of TRP(\aleph_1).
- (b) If there is a special tree T on ω_1 witnessing the failure of TRP(\aleph_1), then there is a reshaped subset of ω_1 .

NB. We still do not assume that our trees are *thin*; that is, they could have uncountable levels.

Proof. (a) We use Lemma 4. Suppose that $X \subseteq \omega_1$ is reshaped, and let T be a pruned tree of height ω_1 . We can assume that $T \upharpoonright \alpha \in L[X \cap \alpha]$ for a club C of α , by (if necessary) using a definable pairing function $\langle \cdot, \cdot \rangle : \omega_1^2 \to \omega_1$ to make X code more information. We can also assume that $T \upharpoonright \alpha$ is pruned for all $\alpha \in C$. Let $\alpha \in C$. The tree $T \upharpoonright \alpha \in L[X \cap \alpha]$ is pruned and its height has countable cofinality in $L[X \cap \alpha]$, so $T \upharpoonright \alpha$ has a cofinal branch in $L[X \cap \alpha]$. Thus $\langle T, X \rangle$ witnesses the failure of TRP(\aleph_1).

For (b), suppose that *T* is a special tree on ω_1 , witnessed by a specializing function $f: T \to \omega$. Suppose further that *X* is a subset of ω_1 and $C \subseteq \omega_1$ is a club such that $\alpha \in C$ implies that $T \upharpoonright \alpha$ has a cofinal branch in $L[X \cap \alpha]$. By replacing *X* with a set that codes more information and by shrinking *C* to a smaller club if necessary, we can assume that for all $\alpha \in C$,

- $T \upharpoonright \alpha, f \upharpoonright \alpha \in L[X \cap \alpha],$
- $T \upharpoonright \alpha$ has height α , and
- $L[X \cap \alpha] \vDash \alpha \leq \aleph_1$.

For all $\alpha \in C$, the tree $T \upharpoonright \alpha$ is special and has a cofinal branch in $L[X \cap \alpha]$, so its height α must have countable cofinality in $L[X \cap \alpha]$. That is, α is countable in $L[X \cap \alpha]$. As mentioned above, a set that is "reshaped on a club" can easily be improved to a reshaped set, so we are done.

Corollary 6. The nonexistence of reshaped subsets of ω_1 is equivalent to $\text{TRP}(\aleph_1)$ for special, pruned trees.

Theorem 7. The nonexistence of reshaped subsets of ω_1 is equiconsistent with the existence of a Mahlo cardinal. In fact,

- (a) if κ is Mahlo, then in the extension by the Levy collapse to make $\kappa = \aleph_1$ there is no reshaped subset of ω_1 ; and
- (b) if there is no reshaped subset of ω_1 , then \aleph_1 is Mahlo in *L*.

2

Proof. Suppose that κ is Mahlo and that $G \subseteq \text{Coll}(\omega, <\kappa)$ is generic over V. Let \dot{X} be a name for a set $X \subseteq \kappa$. There is (in V) a club of $\alpha < \kappa$ for which $\dot{X} \upharpoonright \alpha$ is a $\text{Coll}(\omega, <\alpha)$ -name; since κ is Mahlo in V, we can find such an α that is inaccessible, and thus $\text{Coll}(\omega, <\alpha)$ has the α -cc. So α is a cardinal in the extension $V[G \cap \text{Coll}(\omega, <\alpha)]$, and it is certainly also a cardinal in $L[X \cap \alpha]$, since $X \cap \alpha = (\dot{X} \upharpoonright \alpha)[G \cap \text{Coll}(\omega, <\alpha)]$. So X is not reshaped.

Suppose that \aleph_1 is not Mahlo in *L*, so that there is a club $C \subseteq \omega_1$ of ordinals α for which $cf^L(\alpha) < \alpha$. Build a set $X \subseteq \omega_1$ such that for every $\alpha \in C \cup \{0\}$ the segment $X \cap [\alpha, \alpha + \omega)$ codes a wellordering of the integers in ordertype α^{+C} , the next member of *C*. Now we prove by induction on $\alpha \in C$ that α is countable in $L[X \cap \alpha]$. The construction of *X* takes care of the successor case: $\alpha \in C \setminus Lim(C)$. Suppose that α is a limit point of *C*. The inductive hypothesis ensures that every $\beta < \alpha$ is countable in $L[X \cap \alpha]$. But α is not a regular cardinal of *L*, so α must also be countable in $L[X \cap \alpha]$.

Corollary 8. $TRP(\aleph_1)$ for special, pruned trees is equiconsistent with the existence of a Mahlo cardinal.

References

[1] Itay Neeman and Zach Norwood. Coding along trees and generic absoluteness. To appear.