
PRACTICE FINAL SOLUTIONS (SPRING 2012)

Problem 1.

(a) . . . every disk centered at (a, b, c) contains points in D and points not in D.
(b) It is the following limit, if it exists:

lim
t→0

f(a− 1
2
t, b− 1

2
t, x+ 1

2
t, d+ 1

2
t) = f(a, b, c, d)

t
.

(c) . . . lim(x,y)→(a,b) f(x, y) = f(a, b).
(d)

lim
(x,y)→(a,b)

e(x, y)√
(x− a)2 + (y − b)2

= 0,

where e(x, y) = f(x, y)− L(x, y).
(e) (i) illegal;

(ii) scalar;
(iii) vector;
(iv) illegal.

Problem 2.

(a)
dy

dx
=
y′(t)

x′(t)
=

3 cos t

− sin t
= −3cos t

sin t
= −3 cot t.

d2y

dx2
=

d
dt

(
dy
dx

)
x′(t)

=
3 csc t

− sin t
= − 3

(sin t)3
. X

(b) First notice that the two lines given intersect in the point (−1, 2), which is
therefore the center of the hyperbola. There are many correct answers. For
any a, b such that b

a
= 2,(
x+ 1

a

)2

−
(
y − 2

b

)2

= 1

is correct. (Take, for instance, a = 7 and b = 14.)
(c) The key insight: four points are coplanar if and only if the parallelepiped

they span has volume 0. Recall that you can compute the volume of this
parallelepiped using the scalar triple product, as follows. We need three
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vectors, each starting at one of the given points and ending at another:

~v =
−→
AB = 〈1, 1,−1〉

~w =
−→
AC = 〈2, 3,−2〉

~u =
−−→
AD = 〈4, 5,−4〉 .

Now we compute the scalar triple product |~u · (~v × ~w)| by first computing
~v × ~w:

~v × ~w =

∣∣∣∣∣∣
i j k
1 1 −1
2 3 −2

∣∣∣∣∣∣ = 〈1, 0, 1〉 .
Now we have

|~u · (~v × ~w)| = |~u · 〈1, 0, 1〉| = 0,

so the volume of the parallelepiped is 0. That is, the four points are coplanar.
X

(d) First we simplify the limit:

lim
(x,y)→(1,2)

xy − 2x− y + 2

x2 + y2 − 2x− 4y + 5
= lim

(x,y)→(1,2)

(x− 1)(y − 2)

(x− 1)2 + (y − 2)2
.

Now compute the limit along lines y = m(x− 1) + 2 of slope m through the
point (1, 2):

lim
(x,y)→(1,2)

along y = m(x− 1) + 2

(x− 1)(y − 2)

(x− 1)2 + (y − 2)2
= lim

x→0

(x− 1)(m(x− 1))

(x− 1)2 +m2(x− 1)2
=

m

1 +m2
.

Certainly m
1+m2 depends on which m we choose; for instance, we get 0 with

m = 0 and 1
2
with m = 1. So the limit is different along different lines

through (1, 2), and therefore the limit doesn’t exist. X

Problem 3.
(a) We need a normal vector for the plane. Since the plane should contain the

line L1, its normal vector should be orthogonal to any direction vector for L1.
Moreover, the vector from A to any point on L1 should also be orthogonal to
the normal vector for the plane. By plugging in t = 0, we see that the point
(−1, 0, 0) lies on the line L1. So we can get a normal vector for the plane by
taking the cross product of

−→
AB and 〈−1, 2,−1〉, the direction vector for the

line:

~n =

∣∣∣∣∣∣
i j k
2 2 0
1 2 −1

∣∣∣∣∣∣ = 〈−2, 2, 2〉 .
So our plane’s equation is −2x+ 2y + 2z = d; to find d, we just plug in the
coordinates of one of the points that should be on the plane. For example,
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use (1, 2, 0) to get d = −2(1) + 2(2) + 2(0) = 2. So the plane’s equation is
−2x+ 2y + 2z = 2, i.e., −x+ y + z = 1. X

(b) Following the hint, we find a point B on the line L1 such that
−→
AB is perpen-

dicular to L1. To do this, first pick any point B′ on the line, and project the
vector

−−→
AB′ onto a direction vector for the line. (Draw a picture.) An easy

choice of point on the line is (−1, 0, 0) from part (a), so
−→
AB = 〈−2,−2, 0〉.

The projection of 〈−2,−2, 0〉 onto 〈1, 2,−1〉 is given by

〈1, 2,−1〉 · 〈−2,−2, 0〉
‖〈1, 2,−1〉‖2

〈1, 2,−1〉 = 〈−1,−2, 1〉 .

The direction vector ~u of our line L2 should be perpendicular to L1, so we
should have ~n =

−−→
AB′−〈−1,−2, 1〉. That is, ~n = 〈−2,−2, 0〉−〈−1,−2, 1〉 =

〈−1, 0,−1〉. We have a point and a direction vector, so we can write down
the parametrization of the line:

〈1, 2, 0〉+ t 〈−1, 0,−1〉 . X

Problem 4.
(a) The projection is given by

proj~b(~a) =
〈1, 2, 3〉 · 〈1, 1, 1〉
‖〈1, 1, 1〉‖2

=
1 + 3 + 2

3
〈1, 1, 1〉 = 〈2, 2, 2〉 .

(b) First, we notice that the intersection of the line and the plane is the point
(0, 2,−2). To see this, substitute the formulas for x, y, and z in the definition
of the line for x, y, and z in the equation for the plane, obtaining

(−1 + t) + (−1 + 3t) + (−4 + 2t) = 0.

Solving this gives t = 1, and the point on the line corresponding to t = 1 is
(0, 2,−2).

The vector 〈1, 1, 1〉 is a normal vector for the plane, so the projection ~n
computed in part (a) is also a normal vector to the plane. Write ~a for the
vector 〈1, 3, 2〉, a direction vector for the line L1. If you draw in ~a and ~n on
the picture, you will see that

~a− 2~n = 〈1, 3, 2〉 − 2 〈2, 2, 2〉 = 〈−3,−1,−2〉

is a direction vector for L2. So L2 is parametrized by

〈0, 2,−2〉+ t 〈−3,−1,−2〉 . X

Problem 5.
(a) The angle between two planes is defined to be the angle between their normal

vectors.
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(b) The normal vector for our plane should be orthogonal both to the normal vec-
tor 〈2,−3, 1〉 of the given plane and to 〈−3, 1, 2〉, the vector

−−−−−−−−−−−−−→
(−1, 1,−1)(2, 2, 1).

So we just take the cross product of these two vectors:

〈2,−3, 1〉 × 〈3, 1, 2〉 =

〈
i j k
2 −3 1
3 1 2

〉
= 〈−7,−1, 11〉 .

So our plane has equation −7x − y + 11z = d. We find d by plugging
in some point we want to lie on the plane; for instance, plug in (2,−2, 1)
to get d = −7(2) − (−2) + 11(1) = −5. So the equation of the plane is
−7x− y + 11z = −5. X

Problem 6.
(a) A level curve is the projection to the xy-plane of a horizontal trace.
(b) We want to fix x; say x = a. The equation becomes z = 3a2−y2−2ay. This

is a parabola (facing downward). If y is fixed (say y = b), then the equation
becomes z = 3x2 − 2xb− b2, which also defines a parabola (facing upward).

(c) The horizontal trace at z = −5 is defined by

−5 = f(x, y) = 3x2 − y2 − 2xy.

Recall that the gradient of f(x, y) at (1, 2) is normal to the level curve at
(1, 2), so we can compute the gradient and then use that to get a direction
vector for the tangent line.

∇f = 〈6x− 2y,−2y − 2x〉 ; ∇f(1, 2) = 〈2,−6〉 .
So 〈1, 2,−5〉+ t 〈6, 2, 0〉 parametrizes the line tangent to the horizontal trace
through (1, 2,−5). X

Problem 7.
(a) The derivative on each piece is continuous, so it suffices to show that the

derivative functions on the pieces ‘line up’.
The derivative on the first piece is 0, and the derivative on the cubic piece

is x2. These have the same value at 0, so the derivative is continuous at
0. The derivative of the cubic piece at 1 is 1, so we need to check that the
derivative of the circular piece at x = 1 is also 1. The relevant portion of the
circle is parametrized by r(t) =

〈
2 cos t, 4

3
+ 2 sin t

〉
for t ∈ [−π

4
, 0]. We have

r′(t) = 〈−2 sin t, 2 cos t〉, so r′(−π
4
) = 〈1, 1〉. So the limit as x approaches 1 of

the derivative of the circular piece is also 1, which means that the derivative
function is also continuous at 1. X

(b) First observe that r′′(t) = 〈−1, 1〉, so we can compute the curvature of the
circular piece:

κ(−π
4
) =

∥∥r′(−π
4
)× r′′(−π

4
)
∥∥∥∥r′(−π

4
)
∥∥3 =

2

(
√
2)3

=
1√
2
.
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The curvature of the cubic piece is given by:

κ(x) =
|2x|

(1 + (x2)2)3/2
=

|2x|
(1 + x4)3/2

,

which is continuous for all x (since the denominator is never 0) and has value
1√
2
at x = 1. So the curvature function is continuous at x = 1. For the cubic

piece, we also have κ(0) = 0, so the curvature function is also continuous at
0. Since the curvature function of each piece is continuous on the piece, the
whole curvature function is continuous. X

Problem 8.
(a) First we compute r′ and r′′:

r′(t) = 〈−4 sin t, 3, 4 cos t〉
r′′(t) = 〈−4 cos t, 0,−4 sin t〉 .

Computing T, N, and B is just a matter of remembering the definitions and
computing:

T(t) =
r′(t)

‖r′(t)‖
=

〈−4 sin t, 3, 4 cos t〉√
(−4 sin t)2 + 32 + (4 cos t)2

=
1

5
〈−4 sin t, 3, 4 cos t〉 .

N(t) =
T′(t)

‖T′(t)‖
=

1
5
〈−4 cos t, 0,−4 sin t〉

4/5
= 〈− cos t, 0,− sin t〉 .

B(t) = T(t)×N(t) =
1

5

∣∣∣∣∣∣
i j k

−4 sin t 3 4 cos t
− cos t 0 − sin t

∣∣∣∣∣∣ = 1

5
〈−3 sin t,−4,−3 cos t〉 .

(b) The normal plane has tangent vector T(t), and r(t) lies on it. So it has
equation

(−4
5
sin t)(x− 4 cos t) + 3

5
(y − 3t) + 4

5
cos t(z − 4 sin t) = 0.

If you want, clear denominators and rearrange to get

(−4 sin t)x+ 3y + (4 cos t)z = 9t− 16 cos t+ 16 sin t cos t.

Problem 9. We have the function f(x, y, z) = xy + yz and the constraints
g(x, y, z) = x2 + y2 − 4 = 0 and h(x, y, z) = yz − 4 = 0. First compute gradi-
ents:

∇f = 〈y, x+ z, y〉
∇g = 〈2x, 2y, 0〉
∇h = 〈0, z, y〉 .

Now use the Lagrange method to get equations:

〈y, x+ z, y〉 = ∇f = λ∇g + µ∇h = λ 〈2x, 2y, 0〉+ µ 〈0, z, y〉 .



6 PRACTICE FINAL SOLUTIONS (SPRING 2012)

This gives the following three equations:

y = 2xλ(1)
x+ z = 2yλ+ µz(2)

y = yµ.(3)

From the third equation we deduce that either y = 0 or µ = 1.
Case 1: y = 0. We rule out this case, since no point with y-coordinate 0 satisfies

the constraint h(x, y, z) = yz − 4 = 0. X
Case 2: µ = 1. Substituting 1 for µ in equation (2) and canceling the z’s gives

x = 2yλ. Plug this in for x in equation (1) to get x = 4xλ2, which implies that
either x = 0 or λ2 = 1

4
(so λ = ±1

2
).

Case 2a: x = 0. We have y = 2xλ = 0, but no point with x-coordinate 0 and
y-coordinate 0 satisfies the constraint g(x, y, z) = x2+y2−4 = 0. So this case yields
no solutions.

Case 2b: x 6= 0 and λ = ±1
2
. In this case, y = ±x, so we can solve the constraint

equation x2+ y2 = 4 to get 2x2 = 4, i.e., x = ±
√
2 and y = ±

√
2. If y = ±

√
2, then

the other constraint gives ±
√
2z − 4 = 0, i.e., z = ±2

√
2. We have four points to

consider:

(
√
2,
√
2, 2
√
2), (−

√
2,−
√
2,−2

√
2), (−

√
2,
√
2, 2
√
2), and (

√
2,−
√
2,−2

√
2).

Check that

f(
√
2,
√
2, 2
√
2) = f(−

√
2,−
√
2,−2

√
2) = 6, and

f(−
√
2,
√
2, 2
√
2) = f(

√
2,−
√
2,−2

√
2) = 2.

So the maximum value of the function is 6, and the minimum value is 2. X

Problem 10. This is a straightforward application of the Chain Rule. First com-
pute zt in terms of y = y(s, t):

zt = zxxt + zyyt = y · s2 + (x− 3y2)yt = ys2 + (s2t− 3y2)yt.

Now plug in (2, 1) for (s, t), and use the information given:

zt(2, 1) = y(2, 1) · 4 + (4 · 1− 3(y(2, 1))2)yt(2, 1) = −4− 4 + 3 = −5 . X

Problem 11.
(a) The gradient points in the direction of greatest increase, so we compute the

gradient:
∇T =

〈
ex−yy2,−ex−yy2 + 2ex−yy

〉
.

Plug in the point (1, 1) to get

∇T (1, 1) = 〈1,−1 + 2〉 = 〈1, 1〉 .
So the bumblebee should move in direction 〈1, 1〉 to get warmer the fastest.
X
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The fastest rate of increase (i.e., the maximum value of the directional
derivative in any direction) is the directional derivative in the direction of
the gradient, which is the length of the gradient. In this case, the length
of the gradient is

√
12 + 12 =

√
2, so the fastest rate of increase of the

temperature is
√
2. X

(b) Compute the directional derivative: D〈0,1〉T = ∇T · 〈0, 1〉 = 1. Since the di-
rectional derivative is positive in this direction, the temperature will increase.
X

(c) Now we want to find vectors orthogonal to the graph of T (not just orthogonal
to the level curves), so we should rewrite our surface as a level surface and
compute the gradient: z = T (x, y) = 1 rearranges to become ex−yy2−z−1 =
0. The gradient is〈

ex−yy2,−ex−yy2 + 2ex−yy,−1
〉
= 〈1, 1,−1〉 .

The length of this vector is
√
3, so our two unit vectors are〈

1√
3
, 1√

3
,− 1√

3

〉
and

〈
− 1√

3
,− 1√

3
, 1√

3

〉
. X

Problem 12.

(a) We look at the partials and determine where they are 0 or undefined.

∇f = 〈2x− 4y, 2y − 4x〉 .

Setting 2x− 4y = 2y − 4x = 0 and solving for x and y gives x = y = 0. To
classify this critical point, we use the second derivative test:∣∣∣∣fxx fxy

fxy fyy

∣∣∣∣ = ∣∣∣∣ 2 −4
−4 2

∣∣∣∣ = −12 < 0.

So there is a saddle point at the origin.
(b) If f is a continuous function defined on a closed and bounded domain D,

then f takes a maximum and minimum value on D. It achieves its extreme
values either at critical points of f or on the boundary of D.

(c) Since f has a saddle point at the origin (and no other critical points), we
know that f will attain its extreme values on the boundary of the domain.
The four pieces of the boundary are parametrized as follows:

y = x+ 1 x ∈ [−1, 0];
〈cos t, sin t〉 t ∈ [0, π/2];

y = x− 1 x ∈ [−1, 1]
x = −1 y ∈ [−2, 0].
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We might as well record now the values of f at the ‘corners’:
f(−1, 0) = 1

f(0, 1) = 1

f(1, 0) = 1

f(−1,−2) = −3.
First, we consider the vertical line x = −1.

f(−1, y) = 1 + y2 + 4y = y2 + 4y + 1

has derivative 2y + 4, and so its only critical point is y = −2, which we’ve
already accounted for.

Now, consider the topmost diagonal line, y = x+1. The function on that
line looks like
f(x, x+ 1) = x2 + (x+ 1)2 − 4x(x+ 1) = −3x2 + (x+ 1)2 − 4x,

which has derivative −4x − 2. So the only critical point is x = −1
2
, which

gives the possible extreme value
f(−1

2
, 1
2
) = 3

2
.

Next, consider the circle 〈cos t, sin t〉, t ∈ [0, π/2]. Restricted to this por-
tion of the domain, the function looks like

f(cos t, sin t) = 1− 4 cos t sin t = 1− 2 sin(2t),

which has derivative −4 cos t. So the only critical point here is t = π/4,
which gives the possible extreme value

f(cos π
4
, sin π

4
) = f( 1√

2
, 1√

2
) = 1

2
+ 1

2
− 4(1

2
) = −1.

Finally, consider the bottom diagonal line y = x − 1. Restricted to this
portion of the domain, the function looks like

f(x, x− 1) = x2 + (x− 1)2 − 4x(x− 1)

which has derivative 8x− 2− 4x2. Setting this equal to 0 gives the equation
2x2 − 4x + 1, which has solutions x = 1 ± 1√

2
, by the quadratic formula.

Since x = 1 + 1√
2
is outside the domain [−1, 1], we only have to consider

x = 1− 1√
2
. We have

f(1− 1√
2
, 1√

2
) = (1− 1√

2
)2 + 1

2
− 4(1− 1√

2
)( 1√

2
) = 4− 3

√
2 ≈ −0.2426.

So the absolute max is f(−1
2
, 1
2
) = 3

2
, and the absolute min is f(−1,−2) =

−3. X


