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For our purposes, the Axiom of Choice (AC) is the following statement:
A product of nonempty sets is nonempty. That is, if {Sα : α ∈ A}
is a set of nonempty sets, then the product

∏
α∈A Sα is nonempty.1

Recall that Tychonoff’s Theorem is the assertion that a product of compact
topological spaces is compact. We will show (without using AC) that Ty-
chonoff’s Theorem implies AC. It follows that Tychonoff’s Theorem is equiv-
alent to AC, since there is a proof (using AC) of Tychonoff’s Theorem. This
equivalence was first observed by Kelley in 1950 ([1]).

It will turn out to be useful (as it often is in applications of compactness)
to use the following form of the definition of compactness, which is equivalent
to the usual one.

Definition. A family F of sets has the finite intersection property (FIP) if,
for all F1, . . . , Fn ∈ F, the intersection F1 ∩ · · · ∩ Fn is nonempty.

A space X is compact iff it has the following property: if F is a family of
closed subsets of X with the FIP, then

⋂
F 6= ∅; that is, there is a point x ∈ X

that belongs to every F ∈ F. You should write down the three-line proof that
this condition is equivalent to compactness. The proof requires little more
than the fact that a set is closed iff its complement is open.

Theorem. Tychonoff’s Theorem implies AC.

Proof. Let {Sα : α ∈ A} be a set of nonempty sets. Our task is to show that
the product

∏
α∈A Sα is nonempty. Add to each set Sα a new element d that

doesn’t belong to any of the Sαs. Now topologize Sα∪{d} as follows: equip Sα
with the cofinite topology (the open sets are the cofinite sets and the empty
set). And declare that the set {d} is open; that is, d should be an isolated
point in Sα ∪ {d}.

Any space with the cofinite topology is compact. The idea: to produce a
finite subcover of a typical open cover, take one nonempty set from the open
cover. It is cofinite, so there are only finitely many points that don’t belong
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1This is what I call the ‘Algebraist’s form of the Axiom of Choice’. The point is that there
is a function that assigns to each α a member of Sα. I think the algebraist’s version makes
that less clear than it should be.
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to it. Pick one set from the cover for each of those remaining points, and you
have a finite subcover. (Write this down carefully!)

Adding an isolated point to a compact space preserves compactness (medi-
tate on this for a minute and you’ll see why it’s true), so Sα ∪ {d} is compact.
By Tychonoff’s theorem, the product space X =

∏
α∈A(Sα ∪ {d}) is compact.

We must use this to conclude that the set
∏

α∈A Sα is nonempty. Consider the
following family of subsets of the product space:

F =
{
π−1α (Sα) : α ∈ A

}
,

where πα : X � Sα ∪ {d} is the map that projects onto coordinate α. Since
Sα is closed in Sα ∪ {d} (its complement is open!), and the projection πα is
continuous, every member of the family F is a closed subset of X. We will
verify that F has the FIP. Let F1, . . . , Fn ∈ F; say

F1 = π−1α1
(Sα1), . . . , Fn = π−1αn

(Sαn).

This is a subtle step, but the point is that we don’t need AC to prove that a
finite product of sets is nonempty. (Prove it by induction!) Since each Sαk

is
nonempty, there is some sk ∈ Sαk

, and we can use these, together with the
distinguished point d, to produce a member x of F1 ∩ · · · ∩ Fn:

x(β) =

{
sk if β = αk for some k
d otherwise.

Then x ∈ F1 ∩ · · · ∩ Fn, so F has the FIP.
By the compactness ofX, there is some x ∈ X that belongs to every member

of F; that is, x ∈
⋂
α∈A π

−1
α (Sα). But

⋂
α∈A π

−1
α (Sα) is just the set of y whose

αth entry belongs to Sα, for every α, and this set is just
∏

α∈A Sα. So we have
shown that

∏
α∈A Sα is nonempty, as required.
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