LOGIC EXERCISES – DAY 1

Exercise 1.

- (a) If $h: \mathbf{A} \to \mathbf{B}$ is an \mathcal{L} -homomorphism then its range h(A) is the underlying set of a substructure of \mathbf{B} .
- (b) Give an example of a homomorphism that isn't a strong homomorphism.
- (c) Give an example a strong homomorphism that isn't an embedding.

Exercise 2.

- (a) Suppose that X is a finite set and \mathcal{L} is a finite language. Prove that there are only finitely many \mathcal{L} -structures with underlying set X.
- (b) Let $\mathcal{L} = \{c_n : n \in \mathbb{N}\}$ be a language with infinitely many constant symbols, and let $A = \{0, 1\}$. How many \mathcal{L} -structures have underlying set A? Which of them are isomorphic?
- (c) Let $\mathcal{L} = \{P\}$ consist of one unary predicate symbol. Describe all countably infinite \mathcal{L} -structures up to isomorphism.
- (d) Describe up to isomorphism all structures in the empty language.

Exercise 3.

- (a) Give an example to show that in the language $\mathcal{L}_{group} = \{1, \cdot\}$, a substructure of a group need not be a subgroup.
- (b) Define a language for groups (different from the one in the first part) so that a substructure of a group is a subgroup.

Exercise 4.

- (a) Prove that the structures $(\mathbb{N}, 0, S, +, \cdot)$ and $(\mathbb{Q}, 0, 1, +, \cdot)$ have no automorphisms other than the identity maps. (An *automorphism* of an \mathcal{L} -structure **A** is an isomorphism $\mathbf{A} \to \mathbf{A}$.)
- (b) Prove that the structure $(\mathbb{R}, 0, 1, +, \cdot)$ has no automorphisms other than the identity.
- (c) (If you know a little more set theory than you might have seen in the prep material) Prove that the universe of sets has no \in -automorphisms other than the identity.

Exercise 5. Recall from algebra that a bijective homomorphism of groups or rings is an isomorphism (of groups or rings). Prove that if \mathcal{L} contains no relation symbols (is an "algebraic language"), then a bijective \mathcal{L} -homomorphism is an isomorphism. But use the language of graphs or of orderings to prove that this can fail when \mathcal{L} does contain relation symbols.

Date: 22 June 2015.

Exercise 6.

- (a) Prove that ⟨∅⟩, i.e. the substructure of (ℝ, 0, 1, +, ·) generated by ∅, is the substructure (ℕ, 0, 1, +, ·). Can you describe ⟨∅⟩ in general?
- (b) It's customary in model theory (though we haven't done this) to forbid empty underlying sets. Give an example to show that $\langle \emptyset \rangle$ needn't exist if structures are required to have nonempty underlying sets. (That is, give an example of a structure in which there is no smallest nonempty substructure.)
- (c) Suppose that \mathcal{L} has only relation symbols and that **A** is an \mathcal{L} -structure. What is the substructure generated by a set $X \subseteq A$?

Exercise 7. A structure **A** is called *ultrahomogeneous* if every isomorphism between finitely generated substructures of **A** extends to an automorphism of **A**. Show that $(\mathbb{Q}, <)$ is ultrahomogeneous. Does your proof also work for $(\mathbb{R}, <)$?