LOGIC EXERCISES – DAY 10

Exercise 1. For the purposes of this problem, you are allowed to assume Gödel's Second Incompleteness theorem, i.e. $PA \nvdash \text{Con}(PA)$, where $Con(PA)$ is a sentence in the language of arithmetic encoding "PA is consistent" in the natural way. $(\text{Con}(PA) \equiv \neg \text{Provable}_{PA}(\ulcorner \bot \urcorner).)$

- (a) Prove that there is a nonstandard model $\mathfrak N$ of PA and an a nonstandard element a of the underlying set of $\mathfrak N$ which is definable.
- (b) Prove that there is a nonstandard model $\mathfrak{N} \models \mathsf{PA}$ without a proper elementary substructure.

Exercise 2. Prove that there is a partial recursive function which has no total recursive extension, i.e., there is $e \in \mathbb{N}$ such that there is no total recursive $f \supset \varphi_e$.

Exercise 3. Recall that a set $A \subseteq \mathbb{N}$ is Π_2^0 iff we may write $A(x) \iff$ $\forall y \exists z R(x, y, z)$ for some recursive $R \subseteq \mathbb{N}^3$. A set $B \subseteq \mathbb{N}$ is called Π_2^0 complete iff B is Π_2^0 and for all Π_2^0 sets A, $A \leq_1 B$, i.e. there exists a 1-1 total recursive function $f: \mathbb{N} \longrightarrow \mathbb{N}$ such that $x \in A \iff f(x) \in B$. Prove that Tot = { $e \in \mathbb{N}$: φ_e is total} is Π_2^0 -complete.

The following two problems make use of Kleene's Second Recursion The*orem*, which states that if $f(e, \vec{x})$ is a partial recursive function then there exists $e_0 \in \mathbb{N}$ such that $\varphi_{e_0}(\vec{x}) = f(e_0, \vec{x})$ for all \vec{x} .

Exercise 4. Suppose that f is a total recursive function. Prove or give a counter-example to each of the following:

- (a) There is an e such that $W_{f(e)} = \{e\}.$
- (b) There is an e such that $W_e = \{f(e)\}.$

Exercise 5. Let $f(e)$ be a partial recursive function such that for all e,

$$
W_e = \emptyset \implies f(e) \downarrow
$$

Prove that there is some m such that $W_m = \{m\}$ and $f(m) \downarrow$.

Exercise 6. For $A \subseteq \mathbb{N}^2$ let $A_a = \{b \in \mathbb{N} : (a, b) \in A\}.$

- (a) Let A be recursively enumerable and suppose $n \in \mathbb{N}$ is such that $|A_a| = n$ for all $a \in \mathbb{N}$. Show that A is recursive.
- (b) For every pair $n > m$ of natural numbers, give an example of an r.e. set A such that for all $a A_a$ has size n or size m, but A is not recursive.

Date: 3 July 2015.

Exercise 7. Instead of finding monochromatic sets, you might try looking for polychromatic ones. Suppose that $[N]^2$ is colored (using infinitely many colors) in a way that is k -bounded, meaning that each color is used at most k times. Prove that there is an infinite fully polychromatic set X, i.e., a set X such that on pairs of elements of X each color is used at most once.

Exercise 8. This exercise gives a different (possibly more tangible) way to think about the non-axiomatizability of wellfoundedness. (See $#5$ from Tuesday's set.) For $f, g: \mathbb{N} \to \mathbb{N}$ define $f \leq^* g$ if $\{n \in \mathbb{N} : f(n) >$ $g(n)$ is finite. That is, $f \leq^* g$ means that $f(n) \leq g(n)$ for cofinitely many n. Say $f \leq^* g$ if $f(n) < g(n)$ for cofinitely many n. (Note that $f \leq^* g$ doesn't simply mean that $f \leq^* g$ and $f \neq g$.)

- (a) Find a sequence f_0, f_1, \ldots of functions $\mathbb{N} \to \mathbb{N}$ that is \lt^* -decreasing: $f_0 >^* f_1 >^* f_2 >^* \cdots$
- (b) Let $A = (N, \leq)$ be the ordered structure of natural numbers. Let U be a nonprincipal ultrafilter on ω and form the ultrapower \mathbf{A}^{ω}/U . (Recall that this means the ultraproduct of structures M_i where $M_i = A$ for every i.) Use your answer to part (a) to give an explicit strictly decreasing sequence in the ultrapower $(\mathbf{A}^{\omega}/U, \langle \mathbf{A}^{\omega}/U \rangle)$. Of course, by Los's theorem this ultrapower is elementarily equivalent to A, so deduce again that the class of wellorders is not axiomatizable.