
LOGIC PROBLEM SET (THE LAST!) – DAY 13

Exercise 1 (Disjunctive and prenex normal forms).

(a) Prove that every L-formula φ is logically equivalent (i.e., proved by the empty L-theory
to be equivalent to) a formula of the form

φ ≡ Q1x1 · · ·Qnxn φ∗,
where φ∗ is quantifier-free, each Qi is either ∃ or ∀, and the free variables of φ∗ are among
the free variables of φ.

(b) Prove that every quantifier-free formula is logically equivalent to a formula of the form∨
i≤m

∧
j≤ni

φi,j ,

where each φi,j is an atomic formula or the negation of an atomic formula. (Think of
polynomials. ∧ is like multiplication and ∨ is like addition, and you’re collecting like
terms to put a polynomial in standard form. But this doesn’t really help for the proof.)

Exercise 2. Prove that every infinite poset contains an infinite chain or infinite antichain.

Exercise 3. Let F be a field and let L be the language of F -vector spaces: it has a binary
function symbol +, a unary function symbol −, a constant symbol 0, and for each α ∈ F a
unary function symbol µα for scalar multiplication by α. (So elements of the structure will
be vectors — you don’t have scalars and vectors with relations distinguishing them.) Show
that the L-theory of infinite F -vector spaces admits qe. Deduce that this theory is complete.

Exercise 4. Prove that DLO admits qe and is complete.

Exercise 5.

(a) Show that (R, 0,+) admits qe.
(b) Show that (Q, 0,+) is an elementary substructure of (R, 0,+).
(c) Is (Q, 0,+, ·) an elementary substructure of (R, 0,+, ·)?
Exercise 6 (Reflection plus compactness doesn’t imply Con(ZFC)).

Theorem (Reflection, weak form). For every sentence σ in the language of set theory, the
following is a theorem of ZFC: there is a set M (in fact, M can be taken to be Vα for some
α) such that (M,∈) |= σ iff V |= σ, that is, iff σ is true in the universe.

Since ZFC is true in the universe, for every sentence of ZFC there is a set model of that
sentence. It follows that every finite subset of ZFC has a set model. Explain this, and explain
why it does not follow from Compactness that ZFC ` Con(ZFC). (Good thing, since that
would contradict Kurt’s Second Incompleteness Theorem.)

How might you prove Reflection?

Exercise 7. Let K be a field and let K be the algebraic closure of K. A nonconstant polyno-
mial f ∈ K[x1, . . . , xn] is called irreducible if whenever f = gh for some g, h ∈ K[x1, . . . , xn],
either deg(g) = 0 or deg(h) = 0. Furthermore, f is called absolutely irreducible if it is
irreducible over the algebraic closure, i.e., in K[x1, . . . , xn].
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E.g. the polynomial x2 + 1 ∈ R[x] is irreducible, but it is not absolutely irreducible, since
x2 + 1 = (x+ i)(x− i) in C[x]. On the other hand, xy− 1 ∈ Q[x, y] is absolutely irreducible.

Let Fp = Z/pZ and prove the following:

Theorem (Noether–Ostrowski Irreducibility Theorem). For f ∈ Z[x1, . . . , xn] and a prime
p, let fp denote the polynomial in Fp[x1, . . . , xn] obtained by applying the canonical map
Z → Z/pZ to the coefficients of f (i.e., modding out the coefficients by p). For all f ∈
Z[x1, . . . , xn], f is absolutely irreducible (as an element of Q[x1, . . . , xn]) iff fp is absolutely
irreducible (as an element of Fp[x1, . . . , xn]) for cofinitely many p.

Hint: Your proof should be shorter than the statement of the problem. Apparently the
original algebraic proof was fairly complicated.

Exercise 8 (random graph). Let σn be the assertion that, if X and Y are disjoint sets of
vertices both of cardinality ≤ n, then there is a vertex x not in X ∪ Y adjacent to every
member of X and to no member of Y . Let T = {σn : n ∈ N}.
(a) Convince yourself that σn can be written as a sentence in the language of graphs.
(b) Prove that there is a countable model of T and that any two countable models of T are

isomorphic. (This is a set of axioms for the random graph.)
(c) Prove that the random graph (i.e., a countable model of the axioms σn above) includes

every finite graph as a full subgraph. (Recall that G is a full subgraph of H if the
embedding G→ H is a strong homomorphism.)

(d) Prove that the theory of the random graph admits qe.

This theory axiomatizes the “almost-sure” theory of finite graphs. That is, every sentence in
the language of graphs is, among finite graphs, asymptotically almost-surely true or almost-
surely false, according to whether it’s true in the random graph. So this almost-sure theory
is decidable and complete.

Exercise 9.

(a) Show that Th(Z, S) has quantifier elimination. Here S(x) = x+ 1.
(b) Show that Th(N, S) doesn’t have quantifier elimination.

Exercise 10. An abelian group is torsion-free if the identity element is the only element of
finite order. An abelian group (A,+) is divisible if every element a ∈ A is an nth multiple,
for every n. That is, A is divisible if for every a ∈ A and every n ∈ N there is b ∈ A such
that

nb = b+ · · ·+ b︸ ︷︷ ︸
n terms

= a.

(a) Suppose that G and H are nontrivial torsion-free divisible abelian groups, G ⊆ H, ψ(~v, w)
is quantifier-free, ~a ∈ G, b ∈ H, and H |= ψ(~a, b). Prove that there is c ∈ G such that
G |= ψ(~a, c).

(b) Use the following fact about torsion-free abelian groups to prove that the theory of divis-
ible abelian groups (in the language {0,+,−}, so substructures of groups are subgroups)
has q.e.

Theorem. Let G be a torsion-free abelian group. There is a torsion-free abelian group G∗,
called the divisible hull of G, and an embedding i : G → G∗ such that if j : G → H is any
embedding of G into a torsion-free abelian group H, then there is h : G∗ → H such that
j = h ◦ i.


