LOGIC PROBLEM SET (THE LAST!) — DAY 13

Exercise 1 (Disjunctive and prenex normal forms).

(a) Prove that every L-formula ¢ is logically equivalent (i.e., proved by the empty L-theory
to be equivalent to) a formula of the form

¢ = Q11 Qury @7,
where ¢* is quantifier-free, each @); is either 3 or V, and the free variables of ¢* are among

the free variables of ¢.
(b) Prove that every quantifier-free formula is logically equivalent to a formula of the form

\/ /\ Pij;

i<m j<n;
where each ¢; ; is an atomic formula or the negation of an atomic formula. (Think of
polynomials. A is like multiplication and V is like addition, and you’re collecting like
terms to put a polynomial in standard form. But this doesn’t really help for the proof.)

Exercise 2. Prove that every infinite poset contains an infinite chain or infinite antichain.

Exercise 3. Let F' be a field and let £ be the language of F-vector spaces: it has a binary
function symbol +, a unary function symbol —, a constant symbol 0, and for each o € F' a
unary function symbol p, for scalar multiplication by a. (So elements of the structure will
be vectors—you don’t have scalars and vectors with relations distinguishing them.) Show
that the L£-theory of infinite F-vector spaces admits qe. Deduce that this theory is complete.

Exercise 4. Prove that DLO admits ge and is complete.

Exercise 5.

(a) Show that (R,0,+) admits ge.

(b) Show that (Q,0,+) is an elementary substructure of (R, 0, +).
(¢) Is (Q,0,+, ) an elementary substructure of (R,0,+,-)?

Exercise 6 (Reflection plus compactness doesn’t imply Con(ZFC)).

Theorem (Reflection, weak form). For every sentence o in the language of set theory, the
following is a theorem of ZFC: there is a set M (in fact, M can be taken to be V, for some
«) such that (M, €) = o iff V |= o, that is, iff o is true in the universe.

Since ZFC is true in the universe, for every sentence of ZFC there is a set model of that
sentence. It follows that every finite subset of ZFC has a set model. Explain this, and explain
why it does not follow from Compactness that ZFC F Con(ZFC). (Good thing, since that
would contradict Kurt’s Second Incompleteness Theorem.)

How might you prove Reflection?

Exercise 7. Let K be a field and let K be the algebraic closure of K. A nonconstant polyno-

mial f € K[xy,...,x,]is called irreducible if whenever f = gh for some g, h € K[z1,...,Zy],
either deg(g) = 0 or deg(h) = 0. Furthermore, f is called absolutely irreducible if it is
irreducible over the algebraic closure, i.e., in K[x1,...,Z,].
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E.g. the polynomial 22 + 1 € R[z] is irreducible, but it is not absolutely irreducible, since
22+ 1= (z+i)(x —1i) in C[z]. On the other hand, zy — 1 € Q[x,y] is absolutely irreducible.
Let F), = Z/pZ and prove the following:

Theorem (Noether—Ostrowski Irreducibility Theorem). For f € Z[x1,...,z,] and a prime
p, let f, denote the polynomial in Fp[zi,...,z,] obtained by applying the canonical map
Z — 7Z/pZ to the coefficients of f (i.e., modding out the coefficients by p). For all f €
Zlx1,...,xy], f is absolutely irreducible (as an element of Q[z1,...,xzy,]) iff f, is absolutely
irreducible (as an element of Fp[z1,...,xy]) for cofinitely many p.

Hint: Your proof should be shorter than the statement of the problem. Apparently the
original algebraic proof was fairly complicated.

Exercise 8 (random graph). Let o, be the assertion that, if X and Y are disjoint sets of
vertices both of cardinality < n, then there is a vertex x not in X UY adjacent to every
member of X and to no member of Y. Let T'= {0, : n € N}.

(a) Convince yourself that o,, can be written as a sentence in the language of graphs.

(b) Prove that there is a countable model of T" and that any two countable models of T" are
isomorphic. (This is a set of axioms for the random graph.)

(c) Prove that the random graph (i.e., a countable model of the axioms o, above) includes
every finite graph as a full subgraph. (Recall that G is a full subgraph of H if the
embedding G — H is a strong homomorphism.)

(d) Prove that the theory of the random graph admits qe.

This theory axiomatizes the “almost-sure” theory of finite graphs. That is, every sentence in
the language of graphs is, among finite graphs, asymptotically almost-surely true or almost-
surely false, according to whether it’s true in the random graph. So this almost-sure theory
is decidable and complete.

Exercise 9.

(a) Show that Th(Z, S) has quantifier elimination. Here S(z) = = + 1.
(b) Show that Th(N,.S) doesn’t have quantifier elimination.

Exercise 10. An abelian group is torsion-free if the identity element is the only element of
finite order. An abelian group (4, +) is divisible if every element a € A is an n'" multiple,
for every n. That is, A is divisible if for every a € A and every n € N there is b € A such
that
nb=b+---+b=a.
—_———
n terms
(a) Suppose that G and H are nontrivial torsion-free divisible abelian groups, G C H, ¥ (¥, w)
is quantifier-free, @ € G, b € H, and H |= 9(d,b). Prove that there is ¢ € G such that
G = (d,c).
(b) Use the following fact about torsion-free abelian groups to prove that the theory of divis-
ible abelian groups (in the language {0, 4, —}, so substructures of groups are subgroups)
has q.e.

Theorem. Let G be a torsion-free abelian group. There is a torsion-free abelian group G*,
called the divisible hull of G, and an embedding i: G — G* such that if j: G — H is any
embedding of GG into a torsion-free abelian group H, then there is h: G* — H such that
j=hoi.



