LOGIC EXERCISES – DAY 2

Exercise 1.

- (a) Find a sentence true in the structure $(\mathbb{N}, <)$ but not in the structure $(\mathbb{Z}, <)$.
- (b) Find a sentence true in the structure $(\mathbb{Q}, <)$ but not in the structure $(\mathbb{Z}, <)$.
- (c) Can you think of a sentence true in $(\mathbb{Q}, <)$ but false in $(\mathbb{R}, <)$?

Exercise 2. Define appropriate languages for

(a) vector spaces over \mathbb{Q} (better yet, over any field);

(b) metric spaces.

Is there a language suitable to describe topological spaces? Explain your answer.

Exercise 3. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a function. Prove that the set of points at which f is continuous is definable in the structure $(\mathbb{R}, <, f)$.

Exercise 4. A formula is called *universal* if it is of the form $\forall \vec{x} \psi$, where ψ is quantifierfree. *Existential* formulas are defined similarly (with \exists instead of \forall). Let $\mathbf{A} \subseteq \mathbf{B}$ be \mathcal{L} -structures, $\phi = \phi(v)$ be an \mathcal{L} -formula, and $a \in A^n$. Show that

(a) If ϕ is quantifier-free, then $\mathbf{A} \models \phi(a) \iff \mathbf{B} \models \phi(a)$.

- (b) If ϕ is universal, then $\mathbf{B} \models \phi(a) \Longrightarrow \mathbf{A} \models \phi(a)$.
- (c) If ϕ is existential, then $\mathbf{A} \models \phi(a) \Longrightarrow \mathbf{B} \models \phi(a)$.

Exercise 5. Let S be a finite set of vectors in \mathbb{Q}^d . Show that S is linearly independent over \mathbb{Q} iff it is linearly independent over \mathbb{R} . (Hint: previous exercise)

Exercise 6. Show that any definable set in N is 0-definable.

.

Exercise 7. Let (A, 0, +) be a non-trivial abelian group, and let $R^{\mathbf{A}}$ be the relation on A defined by

$$R^{\mathbf{A}}(x, y, z, w) \iff x + y = z + w$$

Show that the addition map $(x, y) \mapsto x + y \colon A \times A \longrightarrow A$ is definable in the structure $\mathbf{A} = (A, R^{\mathbf{A}})$ from the parameter 0, but is not definable without parameters.

Exercise 8. Determine whether the following are 0-definable.

- (a) The set N in (Z, +, ·). (Hint: You may need a nontrivial fact from elementary number theory.)
- (b) The set of nonnegative numbers in $(\mathbb{Q}, +, \cdot)$.
- (c) The set of nonnegative numbers in $(\mathbb{Q}, +)$.
- (d) The set of positive numbers in $(\mathbb{R}, <)$.
- (e) The function $\max(x, y)$ in $(\mathbb{R}, <)$.
- (f) The function average(x, y) in $(\mathbb{R}, +, \cdot)$.
- (g) The function average (x, y) in $(\mathbb{R}, <)$.
- (h) 2 in $(\mathbb{R}, +, \cdot)$.
- (i) The relation $d(x, y) \leq 2$ in a graph, where d denotes the distance function.
- (j) The relation d(x, y) = 2 in a graph (as above).

Date: 23 June 2015.

Exercise 9. Suppose that (X, <) and (Y, <) are countably infinite linear orders that are dense, meaning that between any two distinct points there is a third point. (If x < y then there is z in the interval (x, y).) Suppose also that there is no minimum or maximum in either of these orderings. Prove that (X, <) and (Y, <) are isomorphic.