LOGIC EXERCISES – WEEK 2, DAY 2

Exercise 1. An \mathcal{L} -theory A is an **axiomatization** of an \mathcal{L} -theory T if for every \mathcal{L} -sentence σ ,

$$A \models \sigma \iff T \models \sigma.$$

A theory is called **finitely axiomatizable** if it has a finite axiomatization. Prove that an \mathcal{L} -theory T is finitely axiomatizable iff there is a finite *subset* of T that is an axiomatization of T.

Exercise 2. Prove that the following are not finitely axiomatizable:

- (a) The theory of fields of characteristic 0.
- (b) ACF.
- (c) ACF_0 .
- (d) ACF_p .

Exercise 3 (multiple colorings).

- (a) If $\chi_1, \ldots, \chi_n \colon [\mathbb{N}]^2 \to 2$ are finitely many 2-colorings, then there is a single infinite set that is monochromatic for all of the χ_k .
- (b) On the other hand, if you're given (countably) infinitely many 2-colorings of [N]², you may not be able to find an infinite set simultaneously monochromatic for all of them. Find an example.
- (c) On the third hand, prove: if you have countably many 2-colorings of $[\mathbb{N}]^2$, then there is a single infinite set X simultaneously *almost* monochromatic for all of them. (An infinite set X is **almost monochromatic** for χ if there is some finite set F such that $X \smallsetminus F$ is monochromatic for χ .)

Exercise 4. What if we color all finite subsets of \mathbb{N} instead of just the pairs?

- (a) Show that there is a 2-coloring of $[\mathbb{N}]^{<\omega}$ with no infinite monochromatic set. That is, find a coloring $\chi \colon [\mathbb{N}]^{<\omega} \to 2$ such that there is no infinite $M \subseteq \mathbb{N}$ with $\chi \upharpoonright [M]^{<\omega}$ constant.
- (b) You can't even hope for a single set X such that for every n every n-element subset of X has the same color. Prove this by finding an example.
- (c) BUT! Use (your proof of) part (c) of the previous problem to prove that if $\chi: [\mathbb{N}]^{<\omega} \to 2$ is a coloring, then there is an infinite set $X \subseteq \mathbb{N}$ such that for every k, X is almost monochromatic for the coloring $\chi \upharpoonright [\mathbb{N}]^k$.

Exercise 5. Prove that the class of wellorders is not axiomatizable in the language $\{\leq\}$ of orderings. Prove that its complement, the class of non-wellorders ("illorders"?), isn't axiomatizable either.

Exercise 6.

(a) Show that for any model **M** of PA, there is a unique homomorphism $f: \mathbf{N} \to \mathbf{M}$ and this f is injective. (That is, f is an \mathcal{L}_a -embedding.)

(b) Continuing part (a), define the standard part of **M** by

$$\overline{\mathbb{N}} = f[\mathbb{N}].$$

Show that if \mathbf{M} is nonstandard then $\overline{\mathbb{N}}$ is not definable in \mathbf{M} .

(c) (Overspill) Let \mathbf{M} be a nonstandard model of PA , let $\phi(x, \vec{y})$ be an \mathcal{L}_a -formula, where \vec{y} is a k-vector, and $\vec{a} \in M^k$. Show that if $\mathbf{M} \models \phi(n, \vec{a})$ for infinitely many $n \in \overline{\mathbb{N}}$, then there is $w \in M \setminus \overline{\mathbb{N}}$ such that $\mathbf{M} \models \phi(w, \vec{a})$. In other words, if a statement is true about infinitely many natural numbers, then it is true about an infinite number.

Exercise 7. Let κ be an infinite cardinal. Prove that there are 2^{κ} non-isomorphic linear orders of size κ , perhaps by replacing some points in κ with copies of \mathbb{Q} .

 $\mathbf{2}$