FORCING EXERCISES – DAY 1

Exercise 0. Make sure you know how to do the prep material problems, especially #18.

Exercise 1. Let κ , λ , and μ be cardinals.

- (a) Show that $(\kappa^{\lambda})^{\mu} = \kappa^{\lambda \cdot \mu}$.
- (b) Show that $\kappa^{\kappa} = 2^{\kappa}$.

Exercise 2. Let A be an infinite set of size κ . Show that the set of all bijections from A to A has size 2^{κ} .

Exercise 3. Let κ and λ be cardinals with $\lambda \leq \kappa$ and κ infinite. We write $[\kappa]^{\lambda}$ for the collection of all subsets of κ of size λ . Show that the cardinality of $[\kappa]^{\lambda}$ is κ^{λ} .

Exercise 4. Show that the union of a set of cardinals is a cardinal.

Exercise 5. Suppose that $\langle \alpha_i : i < \lambda \rangle$ is an increasing sequence of ordinals cofinal in some cardinal κ . Show that $cf(\kappa) = cf(\lambda)$.

Exercise 6. Let κ be an infinite cardinal and \prec a wellordering on κ . Show that there is a subset of κ of size κ on which \prec and the usual ordering < agree.

Exercise 7. Show in ZF that the Axiom of Choice is equivalent to the statement that, for every ordinal α , the powerset $\mathscr{P}(\alpha)$ can be wellordered.