FORCING EXERCISES – DAY 10/WEEKEND 2

Exercise 0. Make sure you know how to do the problems from the past few days, especially the questions about forcing. (Seriously. Do them.)

Exercise 1. Let $\mathbb{P} \in M$ be a poset and let $p \in \mathbb{P}$. We say that a set $D \subseteq \mathbb{P}$ is **dense below** p if every $q \leq p$ has an extension $r \leq q$ with $r \in D$.

- (a) Show that if G is \mathbb{P} -generic over M and D is dense below $p \in G$, then $G \cap D \neq \emptyset$.
- (b) Let ϕ be a sentence in the forcing language. Suppose that the set $D = \{q \in \mathbb{P} : q \Vdash \phi\}$ is dense below p. Show that $p \in D$, i.e., $p \Vdash \phi$.

Exercise 2. Suppose that G is \mathbb{P} -generic over M, where \mathbb{P} is countable (in M). Show that if A is an uncountable set of ordinals in M[G], then there is $B \subseteq A$, also uncountable (in M[G]), with $B \in M$.

Exercise 3. An **automorphism** of a poset \mathbb{P} is a bijection $i: \mathbb{P} \to \mathbb{P}$ such that $p \leq q$ iff $i(p) \leq i(q)$. An automorphism i of \mathbb{P} in M induces a permutation of the set $M^{\mathbb{P}}$ of names by the following recursive definition for \mathbb{P} -names τ :

$$i(\tau) = \{ \langle i(\sigma), i(p) \rangle : \langle \sigma, p \rangle \in \tau \}.$$

(We call the permutation of names i too.)

(a) Show that if $i: \mathbb{P} \to \mathbb{P}$ is an automorphism, then $i(\check{x}) = \check{x}$ for every $x \in M$. (b) Let $\tau \in M^{\mathbb{P}}$. Prove that $p \Vdash \phi[\tau]$ iff $i(p) \Vdash \phi[i(\tau)]$.

Exercise 4. The Cohen poset \mathbb{C} consists of finite partial functions $\omega \to \omega$, ordered by reverse inclusion. A **Cohen real over** M is a function $c: \omega \to \omega$ such that the corresponding filter $G = \{p \in \mathbb{C} : p \subseteq c\}$ is \mathbb{C} -generic over M.

- (a) Show that if G is a \mathbb{C} -generic filter over M then the function $g = \bigcup G$ is a Cohen real over M. (So \mathbb{C} -generic filters and Cohen reals are essentially the same thing.)
- (b) Suppose that c is a Cohen real over M. Show that the function $n \mapsto c(2n)$ is also a Cohen real over M.
- (c) More generally, suppose that $A \subseteq \omega$ is any infinite subset *belonging* to M. Let $e_A: \omega \to \omega$ enumerate A in increasing order. Show that the function $n \mapsto c(e_A(n))$ is a Cohen real over M.
- (d) Give an example of an infinite $A \subseteq \omega$ belonging to M[c] such that the function $n \mapsto c(e_A(n))$ is not a Cohen real over M.

Date: 22 July 2016.

Exercise 5. Suppose that $c: \omega \to \omega$ is a Cohen real over M. (See Exercise 4.) Prove that c is not dominated by any function $\omega \to \omega$ that belongs to M.

Exercise 6. Recall that x splits y if $|y \cap x| = |y \setminus x| = \aleph_0$. Suppose that G is $\operatorname{Fn}(\omega, 2)$ -generic over M and put $g = \{n < \omega : (\exists p \in G) \ p(n) = 1\}$.

- (a) Prove that g has infinitely many even members and infinitely many odd members.
- (b) Prove that g is split by any infinite, coinfinite subset $y \subseteq \omega$ that belongs to M.
- (c) Prove that there are infinitely many even numbers in g and infinitely many even numbers not in g.
- (d) Prove that g splits every $y \in [\omega]^{\omega} \cap M$.

Exercise 7. Suppose that \mathbb{P} is a separative poset in M. Show that the set

$$\{\tau \in M^{\mathbb{P}} : \tau[G] = \emptyset \text{ for every } M \text{-generic filter } G\}$$

is an element of M, but the set

 $\{\tau \in M^{\mathbb{P}} : \tau[G] = \emptyset \text{ for some } M \text{-generic filter } G\}$

is not. (Hint: Think about \mathbb{P} -rank.)

Exercise 8 (FERMAT'S LAST THEOREM MOD P, OMGOMG!).

- (a) Fix $r \in \mathbb{N}$. Prove that there is $n \in \mathbb{N}$ such that whenever $n = \{0, \ldots, n-1\}$ is *r*-colored (the elements, not pairs, are colored in *r* colors), there is a monochromatic solution to x + y = z, i.e., a pair of elements x, y < n such that $\{x, y, x + y\}$ is a monochromatic set. (Hint: You needn't do it from scratch.)
- (b) Prove, using part (a) if you want, that for every n the equation $x^n + y^n = z^n$ has a nontrivial solution mod p for all sufficiently large p.

Exercise 9 (Weekend 1, #1). Prove that $\mathfrak{s} \leq \mathfrak{d}$.

Exercise 10. If \mathbb{P} is a poset, then $cc(\mathbb{P})$ is the least cardinal κ such that \mathbb{P} has no antichains of size κ . (So \mathbb{P} has the ccc iff $cc(\mathbb{P}) \leq \aleph_1$.)

- (a) Suppose that $cc(\mathbb{P}) > n$ for every $n < \omega$. Show that $cc(\mathbb{P}) > \omega$, i.e., that \mathbb{P} has an infinite antichain.
- (b) (*) Show that $cc(\mathbb{P})$ must be a regular cardinal.

Email Zach if you have questions or need a hint.