FORCING EXERCISES – DAY 11

Exercise 0. Make sure you know how to do the first 7 problems from the weekend. (Seriously. Do them.)

Exercise 1. Let $\mathbb{P} \in M$ be a separative partial order, and let \hat{G} be the canonical name for the generic filter, as defined in your notes. Show for $q, p \in \mathbb{P}$ that $q \Vdash \check{p} \in G$ iff $q \leq p$.

Exercise 2. Let $\mathbb{P} \in M$ be a poset, and let \mathbb{Q} be a dense subset of \mathbb{P} , viewed as a subposet. Prove the following.

- (a) If G is \mathbb{P} -generic, then $H = G \cap \mathbb{Q}$ is a \mathbb{Q} -generic filter. Furthermore, $G = \{p \in \mathbb{P} : (\exists q \in H) q \leq p\}.$
- (b) If H is Q-generic, then the set $G = \{p \in \mathbb{P} : (\exists q \in H) q \leq p\}$ is P-generic. Furthermore, $H = G \cap \mathbb{Q}$.
- (c) If G and H are taken as in either of the items above, then M[G] = M[H].
- (d) Any \mathbb{Q} -name is a \mathbb{P} -name, and if $\tau \in M^{\mathbb{Q}}$ then $1_{\mathbb{P}} \Vdash_{\mathbb{P}} \phi[\tau]$ iff $1_{\mathbb{Q}} \Vdash_{\mathbb{Q}} \phi[\tau]$.
- (e) For any $\tau \in M^{\mathbb{P}}$ there is a $\sigma \in M^{\mathbb{Q}}$ such that $1_{\mathbb{P}} \Vdash_{\mathbb{P}} \tau = \sigma$.

Exercise 3. Let \mathbb{P} be the poset $[\omega]^{\omega}$, ordered by almost-inclusion: $p \leq q$ iff $p \subseteq^* q$.

- (a) What are antichains in \mathbb{P} ? What is $cc(\mathbb{P})$? (See Weekend 2 for the definition.)
- (b) Prove that \mathbb{P} is countably closed and conclude that \mathbb{P} doesn't add reals, meaning that $M \cap [\omega]^{\omega} = M[G] \cap [\omega]^{\omega}$ whenever G is \mathbb{P} -generic over M.
- (c) Prove that in M[G] the \mathbb{P} -generic G is a nonprincipal ultrafilter on ω .
- (d) Prove that, in fact, G is a Ramsey ultrafilter.

Exercise 4.

- (a) Suppose that $A \subseteq \mathbb{P}$ is a maximal antichain in M and that τ_p is a \mathbb{P} -name for each $p \in A$. Let $\pi = \{\langle \tau_p, p \rangle : p \in A\}$ and observe that π is a \mathbb{P} -name. What is the cardinality of $\pi[G]$?
- (b) Show that if $p \Vdash (\exists x)\phi(x)$, then there is a name $\sigma \in M^{\mathbb{P}}$ such that $p \Vdash \phi[\sigma]$.

Email Zach if you have questions or need a hint.

Date: 25 July 2016.