FORCING EXERCISES – DAY 12

Exercise 0. Make sure you know how to do the problems from yesterday.

Exercise 1. A poset \mathbb{P} is kinda homogeneous if for any $p, q \in \mathbb{P}$ there is an automorphism $i: \mathbb{P} \to \mathbb{P}$ such that i(p) and q are compatible.

(a) Show that if I is an infinite set and J is any nonempty set then the poset

 $\operatorname{Fn}(I, J) = \{p : p \text{ is a function and } \operatorname{dom}(p) \subseteq I \text{ is finite and } \operatorname{ran}(p) \subseteq J\},\$

ordered by reverse inclusion, is kinda homogeneous.

- (b) Suppose that \mathbb{P} is kinda homogeneous and G is \mathbb{P} -generic. Let $x \in M$. Show that if $M[G] \models \phi[x]$, then in fact $1_{\mathbb{P}} \Vdash \phi(\check{x})$.
- (c) Conclude that if \mathbb{P} is kinda homogeneous then for any \mathbb{P} -generic filters G and H, the generic extensions M[G] and M[H] have the same first-order theory (that is, they're elementarily equivalent).

Definition. If $M \subseteq N$ are countable transitive models of ZFC, then we say $f \in \omega^{\omega} \cap N$ is a **dominating real over** N if f dominates every function $\omega \to \omega$ that belongs to M.

Exercise 2.

- (a) Prove that the Cohen-real forcing (from Weekend 2 #4—conditions are finite partial functions $\omega \to \omega$) doesn't add any dominating reals over the ground model. (Caution: there's more to this than proving that the generic real is not a dominating real, but that might be a good place to start.)
- (b) Prove that if $A \in M$ is a mad family (in M) and $d \in N$ is a dominating real, then A is not mad (i.e., not maximal) in N. (Hint: look at the proof of $\mathfrak{b} \leq \mathfrak{a}$.)

Exercise 3 (Weekend 2, #7). Suppose that \mathbb{P} is a separative poset in M. Show that the set

 $\{\tau \in M^{\mathbb{P}} : \tau[G] = \emptyset \text{ for every } M \text{-generic filter } G\}$

is an element of M, but the set

 $\{\tau \in M^{\mathbb{P}} : \tau[G] = \emptyset \text{ for some } M \text{-generic filter } G\}$

is not. (Hint: Think about \mathbb{P} -rank.)

Exercise 4. (*) Assume CH. Prove that there is an infinite mad family $A \subseteq [\omega]^{\omega}$ that remains mad in M[G] for any G that is Cohen-generic over M. (The poset here is the poset of finite partial functions $\omega \to \omega$ again.)

Email Zach if you have questions or need a hint.

Date: 26 July 2016.