FORCING EXERCISES (THE LAST!) – DAY 13

Exercise 0. Make sure you know how to do the problems from yesterday.

Exercise 1. A set x is **ordinal-definable** if there are a formula ϕ in the language of set theory and finitely many ordinals $\alpha_0, \ldots, \alpha_n$ such that $x = \{y : \phi(y, \alpha_0, \ldots, \alpha_n)\}$.

- (a) Reflect on why it isn't obvious that the class of ordinal-definable sets is a definable class.
- (b) Show that, nevertheless, a set is ordinal-definable iff there are a formula ϕ and ordinals β and $\alpha_0, \ldots, \alpha_n < \beta$ such that $x = \{y \in V_\beta : V_\beta \models \phi(y, \alpha_0, \ldots, \alpha_n)\}$. (So it is a definable class, after all.)

Exercise 2. Show that if κ is a strongly inaccessible cardinal in M and \mathbb{P} is a poset of cardinality $< \kappa$ (in M), then κ remains strongly inaccessible in any generic extension M[G] by \mathbb{P} .

Exercise 3. Suppose that \mathbb{P} and \mathbb{Q} are posets in M. Prove that a filter $F \subseteq \mathbb{P} \times \mathbb{Q}$ is $\mathbb{P} \times \mathbb{Q}$ -generic over M iff there are filters G, H such that $F = G \times H, G$ is \mathbb{P} -generic over M, and H is \mathbb{Q} -generic over M[G]. (In this case, M[F] = M[G][H].)

Exercise 4. Suppose that M is a transitive model of ZFC and that

 $M \models$ "X and Y are closed subsets of the unit interval [0, 1]".

(You may assume if you wish that $M \cap [0, 1]$ is countable, though that shouldn't be necessary.) Notice that the sets M thinks are closed are unlikely to be closed. Prove that

(a) $\mu^{M}(X) = \mu(\overline{X}).$ (b) if $X \cap Y = \emptyset$, then $\overline{X} \cap \overline{Y} = \emptyset$. (c) $\overline{X \cap Y} = \overline{X} \cap \overline{Y}.$

(Here \overline{X} is the closure of X in the true unit interval.)

Email Zach if you have questions or need a hint.

Date: 27 July 2016.