FORCING EXERCISES – DAY 6

Exercise 1. Express the axioms for a dense linear order without endpoints as sentences in the language of a single binary relation <.

Exercise 2. The language for set theory consists of a single binary relation symbol, \in . Consider the following as $\{\in\}$ -structures. Which axioms of ZFC does each satisfy?

(a) $(\mathbb{Z}, <)$ (b) (ω, \in) (c) (ω_1, \in) (d) (V_{ω}, \in)

Exercise 3. Prove that if ZFC is consistent, then there is an illfounded model of ZFC, i.e., a model $(M, E) \models \mathsf{ZFC}$ such that $E = \in^M$ is an illfounded binary relation on M.

Exercise 4. Prove that 2^{ω} is a compact metric space. Deduce that $2^{[\omega]^2}$ is compact. Use this fact to derive the following finitary version of Ramsey's theorem from the infinitary one:

Theorem. For every $k < \omega$ there is an $n < \omega$ such that every coloring $[n]^2 \rightarrow 2$ has a monochromatic set of size k.¹

Exercise 5. Recall that a filter F on ω is a Ramsey filter if every 2-coloring of $[\omega]^2$ has a monochromatic set in F. Prove that a Ramsey filter must be a nonprincipal ultrafilter.

Exercise 6. If $A \subseteq [\omega]^{\omega}$ is a countably infinite almost-disjoint family and there is a mad family of size κ , then A extends to a mad family of size κ . Prove this.

Definition. A family $I \subseteq [\omega]^{\omega}$ is called **independent** if the intersection of any finitely many members of I with the complements of any finitely many other members of I is infinite.

Exercise 7. Prove that there is an independent family of size 2^{\aleph_0} . Prove that there are $2^{2^{\aleph_0}}$ ultrafilters on ω (using the independent family or otherwise).

Date: 18 July 2016.

¹NB. The least n suitable for k = 5 is not known! It's known to be between 43 and 49, though.