FORCING EXERCISES – DAY 7

Exercise 0. Make sure you know how to do the problems from yesterday.

Exercise 1. Suppose that M is a transitive set and $\alpha \in M$. Then

 $\langle M, \in \rangle \models$ " α is a cardinal",

if α is truly a cardinal. (NB. The converse is false.)

Exercise 2. Let X be a countable elementary substructure of some H_{θ} , where θ is regular and uncountable. (Note that X is not transitive!)

- (a) Suppose that $A \in X$ and $H_{\theta} \models$ "A is countable". Show that then $X \models$ "A is countable" and $A \subseteq X$.
- (b) Show that $X \cap \omega_1 \in \omega_1$, i.e., $X \cap \omega_1$ is a countable ordinal.
- (c) Define a countable set of ordinals that is not a member of X.
- (d) Show that $\omega_1 \in X$ if $\theta > \omega_1$.
- (e) Describe a subset of ω that is not a member of X.

Exercise 3. A cardinal κ is called **inaccessible** if it is a regular limit cardinal; it's called **strongly inaccessible** if in addition $2^{\lambda} < \kappa$ for every $\lambda < \kappa$.

(a) If κ is strongly inaccessible, then $V_{\kappa} \models \mathsf{ZFC}$. Sketch a proof.

(b) If $V_{\kappa} \models \mathsf{ZFC}$, does it follow that κ is an inaccessible cardinal?

Exercise 4. A theory *T* is **finitely axiomatizable** if there is a finite set $A \subseteq T$ such that $A \models T$; that is, if $A \models \sigma$ for every sentence $\sigma \in T$. Show that ZFC is not finitely axiomatizable.

Exercise 5. Suppose $\mathfrak{a} < 2^{\aleph_0}$. Prove that there is an open dense set $D \subseteq [\omega]^{\omega}$ that doesn't include a mad family of size \mathfrak{a} (though it does include a mad family).

Exercise 6. Instead of finding monochromatic sets, you might try looking for polychromatic ones. Suppose that $[\omega]^2$ is colored (using infinitely many colors) in a way that is *k*-restricted, meaning that each color is used at most *k* times. Prove that there is an infinite fully **polychromatic** set *X*, i.e., a set *X* such that on pairs of elements of *X* each color is used at most once.

Date: 19 July 2016.