FORCING EXERCISES - DAY 9

Exercise 0. Make sure you know how to do the problems from yesterday.

Exercise 1. Suppose that $p \Vdash \phi$ and $\mathsf{ZFC} \vdash (\phi \to \psi)$. Prove that $p \Vdash \psi$. (You may assume that $M[G] \models \mathsf{ZFC}$.)

Exercise 2. Prove the following.

(a) For any formulas $\phi = \phi(v)$ and $\psi = \psi(v)$, names $\tau, \sigma \in M^{\mathbb{P}}$, and condition $p \in \mathbb{P}$,

 $p \Vdash \phi[\tau] \land \psi[\sigma]$ iff both $p \Vdash \phi[\tau]$ and $p \Vdash \psi[\sigma]$.

(b) For any formula $\phi = \phi(v)$ and name $\tau \in M^{\mathbb{P}}, p \Vdash \neg \phi[\tau]$ iff there is no q < p such that $q \Vdash \phi[\tau]$.

Exercise 3. Let \mathbb{P} be the poset of functions $p: n \to \omega$ for all $n \in \omega$, ordered by reverse inclusion: $p \leq q$ iff $p \supseteq q$. For $n \in \omega$ let $D_n = \{p : n \in \text{dom}(p)\}$. By $\mathsf{MA}(\omega)$ we know that there is a filter $G \subseteq \mathbb{P}$ meeting each dense set D_n , and $q = \bigcup G$ is a (total) function $\omega \to \omega$. For each of the following, give a \mathbb{P} -name τ that satisfies the given conditions for all filters G that meet each D_n .

(a) $\tau[G] = 1$ if q(0) = 0 and $\tau[G] = 0$ otherwise.

- (b) $\tau[G] = 1$ if $4 \in \operatorname{ran}(q)$ and $\tau[G] = 0$ otherwise.
- (c) $\tau[G] = \omega$ iff g is surjective.

(d)
$$\tau[G] = g(0)$$
.

- (e) $\tau[G] = \{g(0)\}.$ (f) $\tau[G] = g^{-1}\{0\}.$

Exercise 4 (Same setup as previous problem). Also show that for no name τ do we have $\tau[G] = 1$ iff q is surjective.

Exercise 5. (a) Let $\sigma, \tau \in M^{\mathbb{P}}$ be \mathbb{P} -names. Construct a name $\pi \in M^{\mathbb{P}}$ so that $\pi[G] = \sigma[G] \cup \tau[G]$, no matter what the filter G is.

(b) Let $\sigma \in M^{\mathbb{P}}$. Construct a name $\pi \in M^{\mathbb{P}}$ so that $\pi[G] = \bigcup \sigma[G]$, no matter what the filter G is.

Exercise 6. Let $\tau \in M^{\mathbb{P}}$ with dom $(\tau) \subseteq \{\check{n} : n < \omega\}$. Construct a name $\sigma \in M^{\mathbb{P}}$ so that $\sigma[G] = \omega \smallsetminus \tau[G]$, no matter what the filter G is.¹

Exercise 7. Prove that the poset \mathbb{B} from Day 4, #6, is not σ -centered.

Date: 21 July 2016.

¹Assume that G meets each of the countably many dense sets $D_n = \{p : p \Vdash \check{n} \in \tau \text{ or } p \Vdash$ $\check{n} \notin \tau$ }.