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Abstract. These are the lecture notes for the forcing class in the 2014 UCLA Logic

Summer School. They are a revision of the 2013 Summer School notes. The most sub-

stantial differences are a new proof of the forcing theorems in section 10.3 and a final

section on the consistency of the failure of the axiom of choice. Both write-ups are by

Sherwood Hachtman; the former is based on the author’s notes from a course given by

Richard Laver.

These notes would not be what they are without a previous set of lectures by Justin

Palumbo. The introduction to the forcing language and write-ups of basic results in

sections 10.1 and 10.2 are his, and many of the other lectures follow his notes.

The Axioms of ZFC, Zermelo-Fraenkel Set Theory with Choice

• Extensionality : Two sets are equal if and only if they have the same ele-
ments.

• Pairing : If a and b are sets, then so is the pair {a, b}.
• Comprehension Scheme: For any definable property φ(u) and set z, the

collection of x ∈ z such that φ(x) holds, is a set.
• Union: If {Ai}i∈I is a set, then so is its union,

⋃
i∈I Ai.

• Power Set : If X is a set, then so is P(X), the collection of subsets of X.
• Infinity : There is an infinite set.
• Replacement Scheme: For any definable property φ(u, v), if φ defines a

function on a set a, then the pointwise image of a by φ is a set.
• Foundation: The membership relation, ∈, is well-founded; i.e., every non-

empty set contains a ∈-minimal element.
• Choice: If {Ai}i∈I is a collection of nonempty sets, then there exists a

choice function f with domain I, so that f(i) ∈ Ai for all i ∈ I.

Foundation is equivalent to the statement that every set belongs to some Vα;
Choice is equivalent to the statement that every set can be well-ordered (Zer-
melo’s Theorem). ZFC without the Axiom of Choice is called ZF.

§1. The Continuum Problem. The most fundamental notion in set theory
is that of well-foundedness.

Definition 1.1. A binary relation R on a set A is well-founded if every
nonempty subset B ⊆ A has a minimal element, that is, an element c such that
for all b ∈ B, b R c fails.
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Definition 1.2. A linear order < on a set W is a well-ordering if it is
well-founded.

Remark 1.3. We collect some remarks:

• In a well-order if c is a minimal element, then c ≤ b for all b. So ‘minimal’
in this case means ‘least’.

• Every finite linear order is a well-order.
• The set of natural numbers is a well-ordered set, but the set of integers is

not.
• The Axiom of Choice is equivalent to the statement ‘Every set can be well-

ordered’.

We will now characterize all well-orderings in terms of ordinals. Here are a
few definitions.

Definition 1.4. A set z is transitive if for all y ∈ z and x ∈ y, x ∈ z.

Definition 1.5. A set α is an ordinal if it’s transitive and well-ordered by
∈.

Proposition 1.6. We have the following easy facts:

1. ∅ is an ordinal.
2. If α is a ordinal, then the least ordinal greater than α is α ∪ {α}. We call

this ordinal α+ 1.
3. If {αi | i ∈ I} is a collection of ordinals, then

⋃
i∈I αi is an ordinal.

4. We write On for the class of ordinals. On is well-ordered by ∈.

Ordinals from the bottom up:

• 0 = ∅
• 1 = {∅}
• 2 = {∅, {∅}}
• 3 = {∅, {∅}, {∅, {∅}}}

...
• ω = {0, 1, 2, 3...}
• ω + 1 = {0, 1, 2, 3, ..., ω}

The next proposition captures why ordinals are interesting.

Proposition 1.7. Every well-ordering is isomorphic to a unique ordinal: For
every well-ordering (W,<) there are an ordinal α and a bijection f : W → α
such that a < b if and only if f(a) < f(b).

Before we move on to talking about cardinals we record some terminology
about ordinals.

Definition 1.8. Let α be an ordinal.

• α is a successor ordinal if α = β + 1 for some ordinal β.
• α is a limit ordinal if there is an infinite increasing sequence of ordinals
〈αi | i < λ〉 such that α =

⋃
i<λ αi.

Cardinals are special ordinals. The Axiom of Choice makes two possible defi-
nitions of cardinal equivalent.
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Definition 1.9. An ordinal α is a cardinal if there is no surjection from an
ordinal less than α onto α.

Clearly each n ∈ ω and ω itself are cardinals. We define |A| to be the least
ordinal α such that there is a bijection from A to α. |A| is called the cardinality
of A. It is not hard to see that |A| is a cardinal. Note that |A| = |B| if and
only if there is a bijection from A to B. The following theorem makes it easier
to prove that two sets have the same cardinality.

Theorem 1.10 (Cantor-Schroder-Bernstein). If there are an injection from A
to B and an injection from B to A, then there is a bijection from A to B.

Proof. Without loss of generality we can take A and B to be disjoint, since
we can replace A by {0}×A and B by {1}×B. We let f : A→ B and g : B → A
be injections. We construct a bijection h : A→ B. Let a ∈ A and define the set

Sa = {. . . f−1(g−1(a)), g−1(a), a, f(a), g(f(a)), . . . }.

Let b ∈ B and define the set

Sb = {. . . g−1(f−1(b)), f−1(b), b, g(b), f(g(b)) . . . }.

Some note is due on these definitions. At some point we may be unable to take
the inverse image. Suppose that c ∈ A∪B and Sc stops moving left because we
cannot take an inverse image, if the left-most element of Sc is in A, then we call
it A-terminating, otherwise we call it B-terminating.

Observe that if c1, c2 ∈ A ∪B and c1 ∈ Sc2 , then Sc1 = Sc2 .
Define h as follows. Let a ∈ A. If Sa is A-terminating or does not terminate,

then define h(a) = f(a). If Sa is B-terminating, then a is in the image of g, so
define h(a) = g−1(a).

Clearly this defines a map from A to B, we just need to check that it is a
bijection. First we check that it is onto. Let b ∈ B. If Sb is A-terminating or
doesn’t terminate, then b is in the image of f and Sf−1(b) = Sb is A-terminating

or doesn’t terminate, so we defined h(f−1(b)) = f(f−1(b)) = b as required. If
Sb is B-terminating, then Sg(b) is also B-terminating, so we defined h(g(b)) =

g−1(g(b)) = b. It follows that h is onto.
Let a1, a2 ∈ A and suppose that h(a1) = h(a2). We will show that a1 = a2. If

Sa1 and Sa2 are either

1. both A-terminating or non-terminating; or
2. both B-terminating,

then a1 = a2 follows from the injectivity of f or g.
Suppose for a contradiction that Sa1 is A-terminating or nonterminating and

Sa2 is B-terminating. Then by the definition of h, f(a1) = h(a1) = h(a2) =
g−1(a2). It follows that Sa1 = Sa2 which is a contradiction. a

We are now ready to introduce cardinal arithmetic.

Definition 1.11. Let κ and λ be cardinals.

• κ+ λ is the cardinality of {0} × κ ∪ {1} × λ.
• κ · λ is the cardinality of κ× λ.
• κλ is the cardinality of the set λκ = {f | f : λ→ κ}.
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If κ and λ are infinite, then κ + λ = κ · λ = maxκ, λ. Exponentiation turns
out to be much more interesting. For any cardinal κ, |P(κ)| = 2κ.

Theorem 1.12 (Cantor). For any cardinal κ, 2κ > κ.

Proof. Suppose that there is a surjection H from κ onto 2κ. Consider the
function f : κ → 2 given by f(α) = 0 if and only if H(α)(α) = 1. (Recall that
H(α) is a function from κ to 2.)

We claim that f is not in the range of H, a contradiction. Let α < κ, then f
is different from H(α), since f(α) = 0 if and only if H(α)(α) = 1. a

By Cantor’s theorem we see that for any cardinal κ there is a strictly larger
cardinal. We write κ+ for the least cardinal greater than κ. Moreover the union
of a collection of cardinals is a cardinal. The above facts allow us to use the
ordinals to enumerate all of the cardinals.

1. ℵ0 = ω,
2. ℵα+1 = ℵ+

α and
3. ℵγ =

⋃
α<γ ℵα for γ a limit ordinal.

We often write ωα in place of ℵα. They are the same object, but we think of
ωα in the context of ordinals and ℵα in the context of cardinals.

The Continuum Hypothesis (CH) states that 2ℵ0 = ℵ1. From Cantor’s theo-
rem we know that 2ℵ0 > ℵ0. CH is the assertion that the continuum 2ℵ0 is the
least cardinal greater than ℵ0. The goal of the course is to prove that the axioms
of ZFC cannot prove or disprove CH. To do this we will construct a model of
ZFC where 2ℵ0 = ℵ1 and a different model of ZFC where 2ℵ0 = ℵ2. Don’t worry
if you don’t know what this means, it will all be explained by the end of the
course.

We now investigate a ZFC restriction on cardinal exponentiation.

Definition 1.13. Let α be a limit ordinal. The cofinality of α, cf(α) is the
least λ ≤ α such that there is an increasing sequence 〈αi | i < λ〉 of ordinals less
than α such that supi<λ αi = α.

A sequence 〈αi | i < λ〉 of ordinals in α is said to be cofinal in α if supi<λ αi =
α. Thus cf(α) is the shortest length of an increasing sequence cofinal in α.

Definition 1.14. A cardinal κ is regular if cf(κ) = κ and is singular oth-
erwise.

Proposition 1.15. cf(α) is a regular cardinal.

Theorem 1.16. For any cardinal κ, κ < κcf(κ).

Proof. Set λ = cf(κ) and suppose that there is a surjection H from κ onto
κλ. Fix an increasing sequence 〈αi | i < λ〉 which is increasing and cofinal in κ.

We define a function f which is not in the range of H, a contradiction. Let
f(i) be the least member of κ \ {H(α)(i) | α ≤ αi}. Let α < κ and choose i < λ
such that αi > α. It follows that f(i) 6= H(α)(i), so f 6= H(α). a

Since (2ω)ω = 2ω·ω = 2ω, it follows that cf(2ω) > ω. In particular 2ω 6= ωω.
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§2. Cardinal characteristics. In this section we introduce some combina-
torial notions. We start with a few examples of cardinal characteristics of the
continuum.

Let f, g ∈ ωω. Recall that ωω is the collection of functions from ω to ω. We
define the notion of eventual domination, which is a weakening of the pointwise
ordering. Let f <∗ g if and only if there is an N < ω such that for all n ≥ N ,
f(n) < g(n).

Clearly we can find an upperbound in this ordering for any finite collection of
functions {f0, . . . fk}. For n < ω we define

f(n) = max{f0(n), . . . fk(n)}+ 1.

So in fact f is larger than each fi on every coordinate. What happens if we allow
our collection of functions to be countable, say {fi | i < ω}. Is it still possible
to find a function f such that for all i, fi <

∗ f?
The answer is Yes! To do this we use a diagonal argument. We know that on

each coordinate we can only beat finitely many of the fi. So we make sure that
after the first n coordinates, we always beat the nth function.

For n < ω, we define

f(n) = max
i≤n

(fi(n)) + 1.

It is straightforward to check that this works. Now we ask if it is possible to
continue, that is, to increase the size of our collection of functions to ω1. Given
{fα | α < ω1}, can we find a single function f which eventually dominates each
fα?

The answer to this question is sensitive to the Set Theory beyond the Axioms
of ZFC. For instance, if CH holds, then the answer is no, since all of ωω can be
enumerated in ω1 steps. However, we will see that it is possible that the answer
is yes if we assume Martin’s Axiom.

We give a definition that captures the essence of this question.

Definition 2.1. Let b be the least cardinal such that there exists a family
of functions F with |F| = b such that no f : ω → ω eventually dominates all
members of F . Such a family is called an unbounded family.

b is a cardinal characteristic of the continuum. We can phrase our observations
as a theorem about b.

Theorem 2.2. ω < b ≤ 2ℵ0 .

Our question about families of size ω1 can now be rephrased as ‘Is b > ω1?’.
We now introduce another cardinal characteristic a.

Definition 2.3. Let A,B be subsets of ω. We say that A and B are almost
disjoint if A∩B is finite. A family F of infinite pairwise almost disjoint subsets
of ω is maximally almost disjoint (MAD) if for any infinite subset B of ω,
there is an A ∈ F such that A ∩B is infinite.

An easy example of a MAD family is to take F = {A,B} where A is the set
of odd natural numbers and B is the set of even natural numbers. In fact any
partition of ω into finitely many pieces is a MAD family.

The following proposition is left as an exercise.
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Proposition 2.4. There is a MAD family of size 2ℵ0 .

The following lemma is a part of what makes MAD families interesting.

Lemma 2.5. There are no countably infinite MAD families.

Proof. Let F = {An | n < ω} be a countable family of pairwise almost
disjoint sets. We will construct B = {bn | n < ω} a subset of ω enumerated in
increasing order. We ensure that bn+1 does not belong to any of A0, . . . An. This
ensures that B ∩An is bounded by bn+1 (hence it is finite). To do this let b0 be
any member of A0 and assuming that we have defined bn for some n, let bn+1

be the least member of An+1 \ (A0 ∪ · · · ∪An) greater than bn. This is possible
since the set in question is infinite by the almost disjointness of F . a

The definition of a captures our questions about the possible sizes of MAD
families.

Definition 2.6. Let a be the least infinite cardinal such that there is a MAD
family of size a.

So we have proved:

Theorem 2.7. ω < a ≤ 2ℵ0

It turns out that a and b are related.

Theorem 2.8 (Solomon, 1977). b ≤ a.

Proof. It is enough to show that any almost disjoint family of size less than
b is not maximal. Let F = {Aα | α < κ} where κ < b be an almost disjoint
family. We may assume that the collection {An | n < ω} are pairwise disjoint.

We seek to define a useful collection of functions from ω to ω. Let ω ≤ α < κ
and for n < ω define fα(n) to be the least m such that the mth member of An
is larger than all elements in An ∩ Aα. This defines {fα | ω ≤ α < κ} and since
κ < b there is a function f which eventually dominates each fα.

Now we define bn to be the f(n)th member of An. Clearly B = {bn | n < ω} is
infinite and almost disjoint from each An, since it contains exactly one member
from each An.

It remains to show that B is almost disjoint from each Aα for ω ≤ α < κ. Fix
α and let N be such that for all n ≥ N , f(n) > fα(n). For each n ≥ N we have
that the f(n)th member of An is greater than all members of An ∩ Aα, since
f(n) > fα(n). In particular bn, which is the f(n)th member of An is not in Aα
for all n ≥ N . So B works. a



FORCING SUMMER SCHOOL LECTURE NOTES 7

§3. Martin’s Axiom. We need some definitions in order to formulate Mar-
tin’s Axiom.

Definition 3.1. A partially ordered set (poset) is a pair (P,≤) where ≤
is a binary relation on P such that ≤ is

1. reflexive; for all p ∈ P, p ≤ p,
2. transitive; for all p, q, r ∈ P, if p ≤ q and q ≤ r, then p ≤ r, and
3. antisymmetric; for all p, q ∈ P, if p ≤ q and q ≤ p, then p = q.

We also require that our posets have a unique maximal element 1P, i.e. for all
p ∈ P, p ≤ 1P.

For simplicity, we will always refer to ‘the poset P’ instead of the poset (P,≤).
Elements of P are often called conditions and when p ≤ q we say that p is an
extension (or strengthening) of q. Posets are everywhere and we will see many
examples throughout the course.

As a running example we will consider the set P = {p | p : n→ 2} ordered by
p1 ≤ p2 if and only if p1 ⊇ p2. It is not hard to check that this is a poset.

Definition 3.2. Let P be a poset and p, q ∈ P.

1. p and q are comparable if p ≤ q or q ≤ p.
2. p and q are compatible if there is an r ∈ P such that r ≤ p, q.

Incomparable and incompatible mean ‘not comparable’ and ‘not compatible’ re-
spectively.

Definition 3.3. Let P be a poset and A ⊆ P. A is an antichain if any two
elements of A are incompatible.

Note that for a fixed n < ω the collection {p | dom(p) = n} is an antichain in
our example poset.

Definition 3.4. Let P be a poset. P has the countable chain condition
(is ccc) if every antichain of P is countable.

Our example poset is ccc for trivial reasons; the whole poset is countable.

Definition 3.5. Let P be a poset. A subset D ⊆ P is dense if for all p ∈ P
there is q ∈ D such that q ≤ p.

In our running example both of the following sets are dense for any n < ω:
{p ∈ P | dom(p) > n} and {p ∈ P | dom(p) is even}. How are these different?

Definition 3.6. Let P be a poset. A subset D ⊆ P is open if for all p ∈ D
and for all q ≤ p, q ∈ D.

The first of the two sets above is open and the second is not.

Definition 3.7. A subset G ⊆ P is a filter if

1. for all p ∈ G and q ≥ p, q ∈ G, and
2. for all p, q ∈ G there is r ∈ G with r ≤ p, q.

If D is a collection of dense subsets of P, then we say that G is D-generic if for
every D ∈ D, D ∩G 6= ∅.

We are now ready to formulate Martin’s Axiom.
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Definition 3.8. MA(κ) is the assertion that for every ccc poset P and col-
lection of κ-many dense sets D, there is a D-generic filter over P.

MA is the assertion that MA(κ) holds for all κ < 2ℵ0 . Roughly speaking MA
asserts that if an object has a reasonable collection of approximations, then it
exists.

Proposition 3.9. MA(ω) holds even if we drop the ccc requirement.

Proof. Let D = {Dn | n < ω} be a collection of dense subsets of a poset
P. We construct a decreasing sequence 〈pn | n < ω〉 such that pn ∈ Dn for all
n. Let p0 ∈ D0. Suppose we have constructed pn for some n < ω. We choose
pn+1 ∈ Dn+1 with pn+1 ≤ pn by density.

We define G = {p ∈ P | p ≥ pn for some n < ω}. It is not hard to see that G
is a D-generic filter over P. a

Proposition 3.10. If MA(κ) holds, then κ < 2ℵ0 . In particular MA(2ℵ0)
fails.

Proof. Suppose that MA(κ) holds. It is enough to show that given a collec-
tion {fα | α < κ} of functions from ω to 2, there is a function g which is not
equal to any fα.

Let P be as in our running example. We claim that for each α < κ, the set
Eα = {p | for some n ∈ dom(p) fα(n) 6= p(n)} is dense. Given a p ∈ P choose an
n ∈ ω \ dom(p) and consider the condition p∪ {〈n, fα(n) +2 1〉}, which is in Eα.

We also need Dn = {p | dom(p) > n} which is dense as we discussed. We let
D = {Dn | n < ω} ∪ {Eα | α < κ} and apply MA(κ) to obtain G.

We claim that g =
⋃
G is a function. For if 〈n, y〉 and 〈n, y′〉 are both in g,

then there are p, p′ ∈ G so that p(n) = y and p′(n) = y′. Since G is a filter,
there is some q ≤ p, p′; so y = q(n) = y′, as needed. Since G ∩Dn 6= ∅ for each
n < ω, we have that g has domain ω; and since G ∩ Eα 6= ∅ for each α < κ, we
have g 6= fα. a

Proposition 3.11. MA(ℵ1) fails if we remove the ccc requirement.

Proof. Let P = {p | p : n → ω1 for some n < ω} ordered by p1 ≤ p2 if and
only if p1 ⊇ p2. We define Eα = {p | α ∈ ran(p)} and Dn = {p | n ∈ dom(p)}.
It is not hard to see that these sets are dense.

Let G be generic for all of our dense sets. We have arranged that g =
⋃
G is

a surjection from ω onto ω1. Such a function cannot exist. a
The way we have formulated MA, CH implies that MA holds for trivial reasons.

It is consistent with ZFC that MA holds with the continuum large, but this result
is beyond the scope of the course. The reason that we introduce MA is that its
statement and applications allow us to get acquainted with core machinery of
forcing (posets, filters, etc.) without being burdened by the metamathematical
complications of forcing proper (which we will tackle separately soon enough).
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§4. Applications of MA to cardinal characteristics. We continue our
applications of MA by showing how MA influences cardinal characteristics of the
continuum. We can view these applications as extensions of the diagonalization
arguments we used to show that b and a are uncountable.

We will prove the following theorem.

Theorem 4.1. MA implies b = 2ℵ0 .

Using Solomon’s Theorem we have,

Corollary 4.2. MA implies a = 2ℵ0 .

Given a collection of functions of size less than continuum we need to build a
ccc poset which approximates a function f which dominates all of the functions
in our collection. In order to satisfy the ccc requirement our approximations will
be finite.

Proof. We define a poset P to be the collection of pairs (p,A) where p ∈ <ωω
and A is a finite subset of ωω. For the ordering we set (p,A) ≤ (q,B) if and only
if p ⊇ q, A ⊇ B and for all f ∈ B and all n ∈ dom(p)\dom(q), p(n) > f(n). (You
should check that ≤ is transitive.) The p-part of the condition is growing the
function from ω to ω and the A-part is a collection of functions which we promise
to dominate when we extend the p-part. The poset P is called the dominating
poset.

We claim that P is ccc. It is enough to show that every set of conditions of
size ω1 contains two pairwise compatible conditions. Let 〈(pα, Aα) | α < ω1〉 be
a sequence of conditions in P. By the pigeonhole principle there is an unbounded
set I ⊆ ω1 such that for all α, β ∈ I, pα = pβ .

Let α, β ∈ I and define p = pα = pβ . We claim that (p,Aα ∪ Aβ) is a lower
bound for both (pα, Aα) and (pβ , Aβ). This is clear, since the third condition
for extension is vacuous. So we have actually shown that that given a sequence
of ω1-many conditions in P there is a subsequence of ω1-many conditions which
are pairwise compatible. This property is called the ω1-Knaster property.

We will apply MA to this poset. Let F = {fα | α < κ} be a collection of
functions from ω to ω where κ is some cardinal less than 2ℵ0 . Now we need
a collection of dense sets to which we will apply MA. First, we have for each
n < ω, the collection Dn = {(p,A) | n ∈ dom(p)}. Given a condition (p,A) we
can just extend the p to have n in the domain ensuring that we choose a value
larger than the maximum of the finitely many functions in A on each coordinate
we add. Call the extension q. It is clear that (q, A) ≤ (p,A) and (q, A) ∈ Dn.
So Dn is dense.

For each α < κ we define Eα = {(p,A) | fα ∈ A}. Clearly this is dense, since
given a condition (q,B), (q,B ∪ {fα}) ≤ (q,B) and is a member of Eα.

From here the proof is easy. By MA we can choose G a D-generic filter where
D = {Dn | n < ω}∪{Eα | α < κ}. Let f =

⋃
{p | (p,A) ∈ G for some A}. By the

usual argument, f ∈ ωω. To see that f eventually dominates each fα, let α < κ
and choose a condition (p,A) ∈ G∩Eα. Let N = dom(p). We claim that for all
n ≥ N , f(n) > fα(n). Fix such an n and choose a condition (q,B) ∈ G∩Dn with
(q,B) ≤ (p,A). By the definition of extension q(n) > fα(n), but q(n) = f(n) so
we are done. a



10 SPENCER UNGER

We sketch another very similar application of MA and leave some of the details
as exercises.

Theorem 4.3. Assume MA(κ) and let A and C be collections of size ≤ κ of
subsets of ω such that for every y ∈ C and every finite F ⊆ A the set y \

⋃
F is

infinite. There is a single subset Z ⊆ ω such that X ∩ Z is finite for all X ∈ A
and Y ∩ Z is infinite for Y ∈ C.

The proof is very similar to the previous so we will define the poset and leave
the rest as an exercise. Let P be the collection of pairs (s, F ) where s ∈ [ω]<ω

and F ⊆ A is finite. Let (s0, F0) ≤ (s1, F1) if and only if s0 ⊇ s1, F0 ⊇ F1 and
for all n ∈ s0 \ s1, n /∈

⋃
F1.

Most of the proof is as before. Here is a helpful hint: Show that for each n < ω
and Y ∈ C, the set EnY = {(s, F ) | there is m ≥ n such that m ∈ s∩Y } is dense.

Corollary 4.4. MA implies a = 2ℵ0

Apply the previous theorem with C = {ω}.

Corollary 4.5. Suppose that MA(κ) holds. If B is an almost disjoint family
of size κ and A ⊆ B, then there is a Z which has infinite intersection with each
member of B \ A and finite intersection with each member of A.

Just apply the theorem with A as itself and C = B \ A. Note that the set Z
codes the set A in that if we are given Z we can define A = {A ∈ B | Z ∩ A is
finite}. This gives us the following fact.

Theorem 4.6. MA implies for all infinite κ < 2ℵ0 , 2κ = 2ℵ0 .

Proof. Let B be an almost disjoint family of size κ. It is enough to show
that |P(B)| = 2ℵ0 .

Define Γ : P(ω) → P(B) by Γ(Z) = {A ∈ B | A ∩ Z is finite}. Γ is surjective
by the previous corollary. a

Corollary 4.7. MA implies 2ℵ0 is regular.

Proof. Suppose cf(2ℵ0) = κ < 2ℵ0 . Then we have

(2ℵ0)κ = (2κ)κ = 2κ = 2ℵ0

which violates König’s Lemma, a contradiction. a
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§5. Applications of MA to Lebesgue measure. Another application of
MA is to Lebesgue measure. To begin we recall some facts about Lebesgue
measure. Lebesgue measure assigns a size to certain sets of real numbers. We
begin by trying to extend the notion of the length of an interval. We first define
a notion of outer measure on all sets of real numbers. Given A ⊆ R we define

µ∗(A) = inf

{∑
n<ω

(bn − an)

∣∣∣∣∣ A ⊆ ⋃
n<ω

(an, bn)

}
.

We list some properties of this outer measure. These properties will be true
of the full Lebesgue measure as well.

Proposition 5.1. µ∗ has the following properties:

1. µ∗(∅) = 0.
2. For all E ⊆ F , µ∗(E) ⊆ µ∗(F ).
3. For all {En|n < ω}, µ∗(

⋃
n<ω En) ≤

∑
n<ω µ

∗(En).

Proof. The first item is clear. For the second, notice that any open cover
of F is also an open cover of E. The main point is the third item. Let ε > 0.
By the definition of µ∗ for each n we can choose an open set Un such that
µ∗(Un) ≤ µ∗(En) + ε · 2−n−1.

Note that
⋃
n<ω Un is an open set covering E =

⋃
n<ω En. So we have

µ∗(E) ≤
∑
n<ω

µ∗(Un) ≤
∑
n<ω

(
µ∗(En) + ε · 2−n−1

)
=
∑
n<ω

µ∗(En) + ε.

Since ε was arbitrary we have the result. a
It is not hard to see that µ∗ returns the length of an interval, that is µ∗(a, b) =

b − a. Further, recall that an open subset of the real line U can be written
uniquely as the union of countably many disjoint open intervals. (To do this
let Ix be the union of all open intervals contained in U with x as a member. If
Ix 6= Iy, then Ix ∩ Iy = ∅. So

⋃
x∈U Ix = U is a disjoint union of open intervals

and hence there can only be countably many intervals involved.) So if we write
U =

⋃
n<ω(an, bn) where the intervals are pairwise disjoint, then it is clear that

we have µ∗(U) =
∑
n<ω(bn − an).

It turns out that the outer measure µ∗ is poorly behaved on arbitrary sets.
To define the full Lebesgue measure we want to restrict ourselves to certain nice
sets. For this, we introduce the Borel sets. The collection of Borel sets B is the
smallest set which contains the open sets and is closed under countable unions
and complements. (A set closed under countable unions and complements is
called a σ-algebra.)

As an aside, note the Borel sets can obtained by defining

B =
⋂
{A | A is a σ-algebra containing the open sets}.

But we can also give a more concrete description of these sets as follows. Define
Σ0

1 the be the collection of open sets. Then put, for α < ω1,

Π0
α = {X | X is a complement of some Y ∈ Σ0

α},
Σ0
α = {X | X is a countable union of sets in

⋃
ξ<α Π0

α}.
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It can then be shown that B =
⋃
α<ω1

Σ0
α.

We are now ready to define what it means to be Lebesgue measurable.

Definition 5.2. A set A ⊆ R is Lebesgue measurable if there is a Borel
set B such that µ∗(A4B) = 0. In this case the Lebesgue measure of A is
µ(A) = µ∗(A). We call the collection of Lebesgue measurable sets L.

We catalog some properties of Lebesgue measure.

Proposition 5.3. L is the smallest σ-algebra containing the Borel sets and
the sets of outer measure zero.

Proposition 5.4. B 6= L.

Theorem 5.5. L and µ have the following properties:

1. (Monotonicity) If A,B ∈ L and A ⊆ B, then µ(A) ≤ µ(B).
2. (Translation invariance) If A ∈ L and t ∈ R, then t + A = {t + x | x ∈
A} ∈ L and µ(A) = µ(t+A).

3. (Countable additivity) If {An | n < ω} ⊆ L is a collection of pairwise
disjoint sets, then µ(

⋃
n<ω An) =

∑
n<ω µ(An).

Theorem 5.6 (AC). There is A ⊆ R with A /∈ L.

Proof. Define an equivalence relation on R by x ∼ y if and only if |x− y| is
rational. Note each equivalence class is countable. Let F be a choice function
for the equivalence classes; we can further assume F ([x]∼) ∈ [0, 1] for each x.

Let A be the range of F . We claim A is not Lebesgue measurable. Notice
R =

⋃
q∈Q(A + q), so by countable additivity, we have 0 < µ(A). But then

µ(
⋃
n∈ω A+ 1

n+1 ) is a subset of [0, 2] with infinite measure, a contradiction. a
Our application of MA will be to sets of measure zero and will generalize the

following fact which is an easy consequence of countable sub-additivity.

Proposition 5.7. The union of countably many measure zero sets has mea-
sure zero.

For ease of notation we let C be the collection of finite unions of open intervals
with rational endpoints. Note that C is countable. We will show that open sets
can be approximated closely in measure by members of C.

Proposition 5.8. Let U be an open set with 0 < µ(U) <∞. For every ε > 0
there is a member Y ∈ C such that Y ⊆ U and µ(U \ Y ) < ε.

Proof. Let ε > 0 and assume that µ(U) is some positive real number m.
Write U =

⋃
n<ω(an, bn) where the collection {(an, bn) | n < ω} is pairwise

disjoint. We choose N < ω such that
∑
n≥N (bn − an) < ε

2 . For each n < N we
choose rational numbers qn, rn such that an < qn < rn < bn and

µ((an, bn) \ (qn, rn)) = |bn − rn|+ |qn − an| <
ε

2
· 2−n−1

We set Y =
⋃
n<N (qn, rn) ∈ C. An easy calculation shows that this works. a

We are ready for our application of MA to Lebesgue measure.

Theorem 5.9. MA(κ) implies the union of κ-many measure zero sets is mea-
sure zero.
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Proof. Let ε > 0. Define a poset P to be the collection of open p ∈ L such
that µ(p) < ε and set p0 ≤ p1 if and only if p0 ⊇ p1. As usual we need to show
that P is ccc.

Towards showing that P is ccc, we let {pα | α < ω1} be a collection of condi-
tions from P. For each α we know that µ(pα) < ε, so there is an nα < ω such
that µ(pα) < ε − 1

nα
. By the pigeonhole principal we may assume that there is

an n such that n = nα for all α < ω1.
Now for each α we choose Yα ∈ C such that Yα ⊆ pα and µ(pα \ Yα) < 1

2n .
Since C is countable we may assume that there is a Y ∈ C such that Y = Yα for
all α < ω1. Now let α < β < ω1, we have

µ(pα ∪ pβ) ≤ µ(pα \ Y ) + µ(pβ \ Y ) + µ(Y ) <
1

2n
+

1

2n
+ ε− 1

n
= ε.

So pα and pβ are compatible.
We use this poset to prove the theorem. Let {Aα | α < κ} be a collection of

measure zero sets. We want to show that the measure of the union is zero. Let
ε > 0 and P be defined as above. We claim that Eα = {p ∈ P | Aα ⊆ p} is dense
for each α < κ. Let q ∈ P. Since µ(Aα) = 0 we can find an open set r such that
Aα ⊆ r and µ(r) < ε− µ(q). Clearly p = q ∪ r ∈ Eα. So Eα is dense.

Now we apply MA to P and the collection of {Eα | α < κ} to obtain G. We
claim that U =

⋃
G is an open set containing the union of the Aα and µ(U) ≤ ε.

Clearly U is open since it is the union of open sets. Clearly it contains the union
of the Aα, since G meets each Eα. It remains to show that µ(U) ≤ ε.

We claim that if {pn | n < ω} is a subset of G, then µ(
⋃
n<ω pn) ≤ ε. Note

that since each pn ∈ G, p0∪· · ·∪pn ∈ G. Hence µ(p0∪· · ·∪pn) < ε. If we define
qn = pn \ (p0 ∪ · · · ∪ pn−1), then we have µ(q0 ∪ · · · ∪ qn) = µ(p0 ∪ · · · ∪ pn) < ε.
So we have

µ

(⋃
n<ω

pn

)
= µ

(⋃
n<ω

qn

)
=
∑
n<ω

µ(qn) ≤ ε

since each partial sum is less than ε. This finishes the claim.
To finish the proof it is enough to show that there is a countable subset B ⊆ G

such that
⋃
B = U . Suppose that x ∈ U . Then x ∈ p for some p ∈ G. So we can

find qx ∈ C such that x ∈ qx ⊆ p. Since G is a filter qx ∈ G. So G =
⋃
x∈U qx.

But C is countable so B = {qx | x ∈ U} is as required. a
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§6. Applications of MA to ultrafilters. Ultrafilters are an important con-
cept in modern set theory. We introduce ultrafilters in some generality and then
give an application of MA to ultrafilters on ω.

Definition 6.1. Let X be a set. A collection F ⊆ P(X) is a filter on X if
all of the following properties hold:

1. X ∈ F and ∅ /∈ F .
2. If A,B ∈ F , then A ∩B ∈ F
3. If A ⊆ B and A ∈ F , then B ∈ F .

Definition 6.2. A filter F on X is principal if there is a set X0 ⊆ X such
that F = {A ⊆ X | X0 ⊆ A}. Otherwise F is nonprincipal.

As an example we can always define a filter on a cardinal κ by setting F =
{A ⊆ κ | κ \ A is bounded in κ}. One way to think about a filter is to think of
members of the filter as ‘large’. If κ = ω, then the filter that we just defined is
called the Fréchet filter.

We want to know when a collection of sets can be extended to a filter. The
following definition gives a sufficient condition.

Definition 6.3. A collection of sets A ⊆ P(X) has the finite intersection
property if for all A0, . . . An from A,

⋂
i≤nAi is nonempty.

Proposition 6.4. If A ⊆ P(X) has the finite intersection property then there
is a filter on X containing A.

Proof. Suppose A has the finite intersection property; define F = {B ⊆ X |
B ⊇ A0 ∩ · · · ∩An for some A1, . . . An ∈ A}. It’s easy to check F is a filter. a

The filter in the above proof is called the filter generated by A.

Definition 6.5. A filter F on X is an ultrafilter if for every A ⊆ X either
A ∈ F or X \ A ∈ F . A filter F on X is maximal if there is no filter F ′ on X
which properly contains F .

Proposition 6.6. A filter is maximal if and only if it is an ultrafilter.

Proof. If F is an ultrafilter, then any set A /∈ F must have X \ A ∈ F .
It follows that any proper extension of F cannot have the finite intersection
property, so cannot be a filter. This shows F is maximal.

Conversely, if F is maximal, let A ⊆ X; one of F ∪ {A} and F ∪ {X \ A}
has the finite intersection property. (Why?) One of these extensions can be
further extended to a filter. Since F is maximal, we must have either A or its
complement in F . a

We have an easy example of an ultrafilter: for any x ∈ X, let F be the
principal filter generated by x. Indeed, all principal ultrafilters are of this form.
The following gives a more interesting class of ultrafilters.

Proposition 6.7. Every filter can be extended to an ultrafilter.

Proof. Given a filter F , consider the partial order of filters containing F
ordered by inclusion. It’s easy to check that the union of any chain of filters is
a filter, so by Zorn’s lemma, there is a maximal such filter, and by the previous
proposition, this is an ultrafilter. a
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We saw the Fréchet filter was F = {A ⊆ ω | ω \ A is finite}. Now F can be
extended to an ultrafilter U . U is nonprincipal since it contains the complement
of every singleton.

Our application of MA to ultrafilters will be to construct a special kind of
ultrafilter called a Ramsey ultrafilter. To motivate the definition we recall the
following theorem.

Theorem 6.8 (Ramsey). For every χ : [ω]2 → 2, there is an infinite set B
such that χ is constant on [B]2.

Proof. We construct three sequences Ai, εi, ai such that Ai+1 ⊆ Ai, ai <
ai+1 and εi ∈ 2 for all i < ω. Let a0 = 0 and A0 = ω. For the induction step,
suppose that we have defined An, an for some n < ω. We choose εn ∈ 2 such
that An+1 = {k ∈ An \ (an + 1) | χ(an, k) = εn} is infinite and let an+1 be the
least member of An+1. This completes the construction.

Let I ⊆ ω be infinite and ε ∈ 2 such that for all i ∈ I, εi = ε. We set
B = {ai | i ∈ I} and claim that χ is constant on [B]2. Suppose ai < aj are in
B. Then aj ∈ Ai+1 and so χ(ai, aj) = εi = ε as required. a

The set B we constructed is often called monochromatic. Here is a sample
application of Ramsey’s theorem.

Theorem 6.9 (Bolzano-Weierstrass). Every sequence of real numbers has a
monotone subsequence.

Proof. Let 〈an | n < ω〉 be a sequence of real numbers. We define a coloring
χ : [ω]2 → 2 by χ(m,n) = 0 if am ≤ an and χ(m,n) = 1 otherwise. (Whenever
we define a coloring we think of the domain as pairs (m,n) with m < n.)

By Ramsey’s theorem there is an infinite B ⊆ ω such that B is monochromatic
for χ. It’s easy to see that 〈an | n ∈ B〉 is monotone. a

Definition 6.10. An ultrafilter U on ω is Ramsey if for every coloring χ :
[ω]2 → 2, there is B ∈ U such that χ is constant on [B]2.

Note that a Ramsey ultrafilter must be nonprincipal. For let n < ω and define
χ as follows. If k > n, then we set χ(n, k) = 0 and for all other pairs l < k, we
set χ(l, k) = 1. Clearly n cannot take part in any monochromatic set for χ.

Theorem 6.11. MA implies there is a Ramsey ultrafilter.

Proof. There are 2ω possible colorings and we want to construct an ultrafilter
with a monochromatic set for each coloring. We enumerate all of the colorings
〈χα | α < 2ω〉 and construct a tower T = {Aα | α < 2ω} such that Aα is
monochromatic for χα. Recall that a tower of subsets of ω has the property that
for all α < β, Aβ ⊆∗ Aα.

Suppose that we have constructed Aα for each α < β. Since MA implies
t = 2ω, we can find A ⊆∗ Aα for all α < β. By Ramsey’s theorem we can find
an infinite subset Aβ of A which is monochromatic for χβ . This completes the
construction.

To complete the proof we notice that our Tower T has the finite intersection
property! Hence T can be extended to an ultrafilter U which is clearly Ramsey.

a


