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§8. First Order Logic. In this section we take a brief detour into first order
logic. The idea for the section is to provide just enough background in first order
logic to provide an understanding of forcing and independence results. We will
touch briefly on both proof theory and model theory. Both of these topics deserve
their own class.

The goal of the class is to prove that CH is independent of ZFC. This means
that neither CH nor its negation are provable from the axioms of ZFC. Here are
some questions that we will answer in this section:

1. What is a proof?
2. How does one prove that a statement has no proof?

We approach first order logic from the point of view of the mathematical
structures that we already know. Here are some examples:

1. (ℵ18, <)
2. ([ω]<ω,⊆)
3. (Z/7Z,+7)
4. 〈R,+, ·, 0, 1〉
We want to extract some common features from all of these structures. The

first thing is that all have an underlying set, ℵ18, [ω]<ω,Z/7Z,R. The second
thing is that they all have some functions, relations or distinguished elements.
Distinguished elements are called constants. Moreover, each function or relation
has an arity. We formalize this with a definition.

Definition 8.1. A structure M is a quadruple (M, C,F ,R) where

1. M is a set,
2. C is a collection of elements of M ,
3. F is a collection of functions f so that each f has domain Mn for some
n ≥ 1 and range M , and

4. R is a collection of sets R so that each R is a subset of Mn for some n ≥ 1.

This definition covers all of the examples above, but is a bit cumbersome in
practice. We want some general way to organize structures by their type. How
many constants? How many operations of a given arity? And so on. To do this
we introduce the notion of a signature.

Definition 8.2. A signature τ is a quadruple (C,F ,R, a) where C,F ,R are
pairwise disjoint and a is a function from F ∪ R to N \ {0}. The elements of
C ∪ F ∪R are the non-logical symbols.

Here we think of a as assigning the arity of the function or relation. If P is
a function or relation symbol, then a(p) = n means that P is n-ary. Here are
some examples.

1. The signature for an ordering is τ< = (∅,∅, {<}, (<7→ 2)). This is a bit
much so usually we write τ< = (<), since the arity of < is implicit.

2. The signature for a group is τgroup = ({1}, {·},∅, (· 7→ 2)). Again we abuse
notation here: Since it is easy to distinguish between function and constant
symbols, we just write τgroup = (·, 1).

3. The signature for a ring with 1 is τring = (+, ·, 0, 1) (with by now standard
abuse of notation).
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Now we want to know when a structure has a given signature τ .

Definition 8.3. A structureM is a τ-structure if there is a function i which
takes

1. each constant symbol from τ to a member i(c) ∈M ,
2. each n-ary relation symbol R to a subset i(R) ⊆Mn and
3. each n-ary function symbol f to a function i(f) : Mn →M .

We think of members of the signature as formal symbols and the map i is the
interpretation that we give to the symbols. Up to renaming the symbols each
structure is a τ -structure for a single signature τ . Instead of writing i(−) all the
time, we will write fM for the interpretation of the function symbol f in the
τ -structure M.

We gather some definitions.

Definition 8.4. Let τ be a signature and M,N be τ -structures.

1. M is a substructure of N if M ⊆ N and for all c,R, f from τ , cM = cN ,
RM = RN ∩Mn where n = a(R) and fM = fN �Mk where k = a(f).

2. A map H : M → N is a τ-homomorphism if H“M together with the
natural structure is a substructure of N .

3. A map H : M → N is an isomorphism if H is a bijection and H and H−1

are τ -homomorphisms.

Note in particular that in (1),M must be closed under the function fN to be
a substructure.

If you are familiar with group theory, you will see that ‘substructure’ in the
signature τgroup (as we have formulated it) does not coincide with ‘subgroup’. In
particular (N,+, 0) is a substructure of (Z,+, 0), but it is not a subgroup. The
notion of homomorphism and isomorphism are the same as those from group
theory.

We now move on to talking about languages, formulas and sentences. Again
we compile some large definitions.

Definition 8.5. Let τ be a signature.

1. A word in FOL(τ) is a finite concatenation of logical symbols,

¬ ∧ ∨ → ∀ ∃ =

punctuation symbols,

, ( )

and variables

v0 v1 v2 . . .

as well as symbols coming from the signature τ : constant symbols c ∈ C,
function symbols f ∈ F , and relation symbols R ∈ R.

2. A term in FOL(τ) (a τ -term) is a word formed by the following recursive
rules: each constant symbol is a term; each variable is a term; and if t1, . . . tn
are terms, then f(t1, . . . , tn) is a term when a(f) = n.



FORCING SUMMER SCHOOL LECTURE NOTES 21

Definition 8.6. Let τ be a signature andM be a τ -structure. Suppose that
t is a τ -term using variables v1, . . . vn. We define a function tM : Mn → M by
recursion. Let ~a ∈Mn.

1. If t = c where c is a constant symbol, then tM(~a) = cM.
2. If t = vi, then tM(~a) = ai.
3. If t = f(t1, . . . tn), then tM(~a) = f(tM1 (~a), . . . tMn (~a)).

Definition 8.7. A formula in FOL(τ) is built recursively from τ -terms as
follows:

1. If t1, t2 are terms, then t1 = t2 is a formula.
2. If t1, . . . tn are terms, then RM(t1, . . . tn) is a formula.
3. if φ and ψ are formulas, then ¬φ, φ ∧ ψ, φ ∨ ψ, φ → ψ,∀vφ and ∃vφ are

formulas.

The formulas defined in clauses (1) and (2) are called atomic.
Suppose that ∃vψ occurs in the recursive construction of a formula φ. We say

that the scope of this occurrence of ∃v is ψ. Similarly for ∀v. An occurrence
of a variable v is said to be bound if it occurs in the scope of an occurrence of
some quantifier.

If an occurrence of a variable is not bound then it is called free. When we
write a formula φ we typically make it explicit that there are free variables by
writing φ(~v). A formula with no free variables is called a sentence. In a given
structure, a formula with n free variables is interpreted like a relation on the
structure. It is true for some n-tuples of elements and false for others.

Definition 8.8. Let M be a τ structure and φ(~v) be a formula with n free
variables. For ~a = (a1, . . . an) we define a relationM � φ(~a) by recursion on the
construction of the formula.

1. If φ is t1 = t2, then M � φ(~a) if and only if tM1 (~a) = tM2 (~a).
2. If φ is R(t1, . . . tn), then M � φ(~a) if and only if RM(tM1 (~a), . . . tMn (~a)).
3. If φ is ¬ψ, then M � φ(~a) if and only if M 2 ψ(~a).
4. If φ is ψ1 ∧ ψ2, then M � φ(~a) if and only if M � ψ1(~a) and M � ψ2(~a).
5. If φ is ψ1 ∨ ψ2, then M � φ(~a) if and only if M � ψ1(~a) or M � ψ2(~a).
6. If φ is ψ1 → ψ2, then M � φ(~a) if and only if M 6� ψ1(~a) or M � ψ2(~a).
7. If φ is ∀uψ(~v, u), then M � ψ(~a) if and only if for all b ∈M , M � ψ(~a, b).
8. If φ is ∃uψ(~v, u), thenM � ψ(~a) if and only if there exists b ∈M such that
M � ψ(~a, b).

We read M � φ(~a) as ‘M models (satisfies, thinks) φ(~a)’ or ‘φ holds in M
about ~a’.

Here is a relatively simple example of the satisfaction relation:

(ℵ18, <) � ∀β∃α β < α

Definition 8.9. Let τ be a signature and M,N be τ -structures.

1. M is an elementary substructure of N (written M ≺ N ) if M ⊆ N
and for all formulas φ(~v) and ~a ∈Mn, M � φ(~a) if and only if N � φ(~a).

2. A map H : M → N is an elementary embedding if for all formulas φ(~v)
and all ~a ∈Mn, M � φ(~a) if and only if N � φ(H(a1), . . . H(an)).
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Elementary substructures and elementary embeddings are key points of study
in model theory and also in set theory.

Definition 8.10. A theory T is a collection of τ -sentences.

For example the group axioms are a theory in the signature of groups.

Definition 8.11. A structure M satisfies a theory T if M � φ for every
φ ∈ T .

Next we say a word or two about proofs. There is a whole field of study
here, but we will only deal with it briefly. We are ready to answer the question
‘What is a proof?’. To do so we forget about structures altogether and focus on
formulas in a fixed signature τ .

Proofs are required to follow certain rules of inference. Examples of rules of
inference are things like modus ponens:

Given φ and φ→ ψ, infer ψ.

In a proof we are also allowed to use logical axioms. An example of a logical
axiom is ¬¬φ→ φ. This is the logical axiom that we use when we do a proof by
contradiction.2

Definition 8.12. Let T be a theory and φ be a sentence. A proof of φ from
T is a finite sequence of formulas φ1, . . . φn such that φn = φ and for each i ≤ n,
φi is either a member of T , a logical axiom, or can be obtained from some of the
φj for j < i by a rule of inference.

In this case we say that T proves φ and write T ` φ. Now we want to connect
proofs with structures. The connection is through soundness and completeness.
We write T � φ if every structure which satisfies T also satisfies φ.

Theorem 8.13 (Soundness). If T ` φ, then T � φ.

Definition 8.14. A theory T is consistent if there is no formula φ such that
T ` φ ∧ ¬φ.

Theorem 8.15 (Completeness). Every consistent theory T has a model of size
at most max{|τ |,ℵ0}

Corollary 8.16. If T � φ, then T ` φ.

So now we are ready to answer the question of how one proves that a statement
like CH cannot be proven nor disproven from the axioms. To show that there
is no proof of CH or its negation, we simply have to show that there are two
models of set theory, one in which CH holds and one in which CH fails!

Remark 8.17. An example of the idea of independence that people have heard
of comes from geometry. In particular, Euclid’s parallel postulate is independent
of the other four postulates. The proof involves showing that there are so-called
non-Euclidean geometries; these are essentially models of the first four postulates
in which the parallel postulate fails.

2For a complete list of rules of inference and logical axioms, we refer the reader to Kunen’s
book The Foundations of Mathematics.
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§9. Models of Set theory. Armed with the model theoretic tools of the
previous section, we can begin a systematic study of models of set theory. The
signature for set theory is that of a single binary relation, τsets = (∈). So a model
in this signature is just (M,E), where M is a set and E is a binary relation on
M . (Of course, the binary relation does not need to have any relation to the
true membership relation ∈.)

We saw in the last section how to build formulas in the signature τsets. It’s
worth noting that each axiom of ZFC can be written as such a formula. For
example, we can formalize the axiom of foundation as

∀x(∃y(y ∈ x)→ ∃z(z ∈ x ∧ ∀y(y ∈ x→ ¬(y ∈ z)))),

and for each formula φ(u, v1, . . . , vn), we have an instance of the axiom scheme
of comprehension,

∀a1 . . . ∀an∀x∃z∀y(y ∈ z ←→ (y ∈ x ∧ φ(y, a1, . . . , an))).

Set theory is extremely powerful, since from the axioms of ZFC we can formalize
classical mathematics in its entirety. That this can be done with only the single
primitive notion of set membership is our whole subject’s raison d’etre.

It will be easier for us to work with τsets-structures M whose interpretation
∈M agrees with the true membership relation; that is, models of the form (M,∈).
It will also be important that our models are transitive. Recall a set z is transitive
if for every y ∈ z, y ⊆ z. We will say a model of set theory (M,∈) is transitive
if M is.

Transitive models are important because they reflect basic facts about the
universe of sets. For the following definition, we regard the formulas (∃x ∈ y)φ
and (∀x ∈ y)φ as abbreviations for the formulas ∃x(x ∈ y∧φ) and ∀x(x ∈ y → φ),
respectively.

Definition 9.1. A formula φ in the language of set theory is a ∆0-formula
if

1. φ has no quantifiers, or
2. φ is of the form ψ0 ∧ ψ1, ψ0 ∨ ψ1, ψ0 → ψ1, ¬ψ0 or ψ0 ↔ ψ1 for some

∆0-formulas ψ0, ψ1, or
3. φ is (∃x ∈ y)ψ or (∀x ∈ y)ψ where ψ is a ∆0-formula.

Proposition 9.2. If (M,∈) is a transitive model and φ is a ∆0-formula, then
for all ~x ∈Mn, (M,∈) � φ if and only if φ holds.

To save ourselves from writing (M,∈) � φ, we will write φM instead.

Proof. We go by induction on the complexity of the ∆0 formula. Clearly if
φ is atomic, then we have φ if and only if φM . Also if the conclusion holds for ψ0

and ψ1, then clearly it holds for all of the formulas listed in item (2). It remains
to show the conclusion for φ of the form (∃x ∈ y)ψ(x) where the conclusion holds
for ψ. Suppose φM holds. Then there is an x ∈ M ∩ y such that ψ(x)M . So
ψ(x) holds and therefore so does (∃x ∈ y)ψ(x). Finally suppose that φ holds.
Then there is x ∈ y such that ψ(x) holds. Since y ∈M and M is transitive, the
witness x is in M . Moreover ψ(x)M . Therefore φM holds. a
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If M is a transitive model, φ is any formula and φ if and only if φM , then we
say that φ is absolute for M .

It is reasonable to ask what can be expressed by ∆0-formulas.

Proposition 9.3. The following expressions can be written as ∆0-formulas.

1. x = ∅, x is a singleton, x is an ordered pair, x = {y, z}, x = (y, z), x ⊆ y,
x is transitive, x is an ordinal, x is a limit ordinal, x is a natural number,
x = ω.

2. z = x× y, z = x \ y, z = x ∩ y, z =
⋃
x, z = ran(x), y = dom(x).

3. R is a relation, f is a function, y = f(x), g = f � x.

Proof. Exercise. a
We recall some transitive models we’ve seen before. First, the V -hierarchy.

V0 = ∅
Vα+1 = P(Vα)

Vγ =
⋃
α<γ

Vα for γ limit.

V is then defined as the union
⋃
α∈On Vα. Note the sets Vα are transitive and

increasing. Foundation asserts that every set belongs to V . We can thus define,
for all sets x, rk(x) to be the least α so that x ∈ Vα+1. Note then that x ∈ y
implies rk(x) < rk(y).

Recall next that for an infinite cardinal κ, Hκ is the collection of sets whose
transitive closure has size less than κ. Note that Vω = Hω. We state a result
about Hκ for κ regular.

Theorem 9.4. If κ is regular and uncountable, then Hκ is a transitive model
of all of the axioms of ZFC except the power set axiom.

We will also state and prove a theorem about the V hierarchy.

Theorem 9.5 (The Reflection theorem). Let φ(x1, . . . xn) be a formula. For
every set M0 there are

1. an M such that M0 ⊆ M , |M | ≤ |M0| · ℵ0 and for all ~a ∈ Mn, φM (~a) if
and only if φ(~a) and

2. an ordinal α such that for all ~a ∈ (Vα)n, φVα(~a) if and only if φ(~a).

Proof. Let φ1, . . . φn be an enumeration of all subformulas of φ. We can
assume that ∀ does not appear in any of the φj , since ∀ can be replaced with
¬∃¬. Let M0 be given.

We define by induction an increasing sequence of sets Mi for i < ω. Suppose
that Mi has be defined for some i < ω. We choose Mi+1 with the following
property for all j ≤ n and all tuples ~a from Mi:

If ∃xφj(x,~a), then there is b ∈Mi+1 such that φj(b,~a).

We use the axiom of choice to choose witnesses to these existential formulas
from among the witnesses of minimal rank. It is clear that for all i, |Mi+1| ≤
|Mi|·ℵ0. Let M =

⋃
i<ωMi. Now we prove that M reflects φ by induction on the

complexity of formulas appearing in φ1, . . . φn. The atomic formula, conjunction,
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disjunction, negation and implication cases are straightforward. The existential
quantifier step follows from our construction of the Mi. Given a tuple ~a from M
and a formula φj for which ∃xφj(x,~a) holds, all of the tuple’s elements appear
in some Mi and therefore there is a witness to ∃xφj(x,~a) in Mi+1.

The proof of the second part of the theorem is an easy modification of the first
part. Instead of choosing specific witnesses to formulas, we simply inductively
choose ordinals αi such that Vαi+1

contains witness to existential formulas with
parameters from Vαi . a

Finally we want a solid connection between transitive and nice enough non-
transitive models.

Definition 9.6. A model (P,E) is

1. well-founded if the relation E is well-founded.
2. extensional if for all x, y ∈ P , {z ∈ P | z E x} = {z ∈ P | z E y} implies

that x = y.

Theorem 9.7 (The Mostowski Collapse Theorem). Every well-founded, exten-
sional model (P,E) is isomorphic to a transitive model (M,∈). Moreover the set
M and the isomorphism are unique.

The model (M,∈) is called the Mostowski collapse of (P,E).

Proof. Let (P,E) be a well-founded, extensional model. We define a map π
on P by induction on E. Induction on E makes sense since E is well-founded.
Suppose that for some x we have defined π on the set {y ∈ P | yE x}. We define
π(x) = {π(y) | y E x}. Let M be the range of π.

Clearly M is transitive and π is surjective. We show that π is one-to-one.
Suppose that z ∈ M is of minimal rank such that there are x, y ∈ P such that
x 6= y and z = π(x) = π(y). Since E is extensional, there is w such that without
loss of generality w E x and not w E y. Since π(w) ∈ π(y), there is a u E y
such that π(u) = π(w). This contradicts the minimality of the choice of z, since
π(u) = π(w) ∈ z and u 6= w.

To see that M and π are unique it is enough to show that if M1,M2 are
transitive, then any isomorphism from M1 to M2 must be the identity map.
This is enough since if we had πi : P → Mi for i = 1, 2, then π2π

−1
1 would

be an isomorphism from M1 to M2. Now an easy ∈-induction shows that any
isomorphism between transitive sets M1 and M2 must be the identity. a

This allows us to prove the following theorem which is needed to fully explain
consistency results.

Theorem 9.8. For any axioms φ1, . . . φn of ZFC, there is a countable transi-
tive model M such that M � φ1, . . . φn.

This is an easy application of both the reflection and Mostowski Collapse
theorems.
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§10. Forcing. This section was not written by the author of these notes:
The introduction to forcing in sections 10.1 and 10.2 was written up by Justin
Palumbo; the proof of the forcing theorems in section 10.3 was written up by
Sherwood Hachtman.

10.1. The Generic Extension M [G].

Definition 10.1. Let M be a countable transitive model of ZFC. Let P be a
poset with P ∈ M . A filter G is P-generic over M (or just P-generic when M
is understood from context, as will usually be the case) if for every set D ∈ M
which is dense in P we have that G ∩D 6= ∅.

Lemma 10.2. Let M be a countable transitive model of ZFC with P ∈ M .
Then there is a P-generic filter G. In fact, for any p ∈ P there is a P-generic
filter G which contains p.

Proof. Since M is countable, getting a P-generic filter G is the same as
finding a D-generic filter G where

D = {D ∈M : D is dense}.

Since MA(ω) always holds such a filter exists. If we want to ensure that p ∈ G
we use the same proof as that of MA(ω), starting our construction at p. a

Let us give a few motivating words.
Suppose we wanted to construct a model of CH, and we had given to us a

countable transitive M , a model of ZFC. Now M satisfies ZFC, so within M one
may define the partial order P consisting of all countable approximations to a
function f : ω1 → P(ω). Of course M is countable, so the things that M believes
are ω1 and P(ω) are not actually the real objects. But for each X ∈ P(ω)M the
set DX = {p ∈ P : X ∈ ran(p)} is dense, as is the set Eα = {p ∈ P : α ∈ dom(p)}
for each α < ωM1 . So a P-generic filter G will intersect each of those sets, and
will by the usual arguments yield a surjection g : ωM1 → P(ω)M . Thankfully, by
the previous lemma, such a G exists. Unfortunately there is no reason to believe
G is in M , and it is difficult to see how we would go about adding it. This is
what we now learn: how to force a generic object which we can adjoin to M
without doing too much damage to its universe.

Given any poset P in M , and a P-generic filter G, the method of forcing will
give us a way of creating a new countable transitive model M [G] satisfying ZFC
that extends M and contains G. Now just getting such a model is not enough.
For in the example above the surjection g : ω1 → P(ω) defined from G was a
mapping between the objects in M . But a priori it may well be that the model
M [G] has a different version of ω1 and a different version of P(ω) and so the
CH still would not be satisfied. It turns out that in this (and many other cases)
the forcing machinery will work out in our favor, and these things will not be
disturbed.

It is worth pointing out that when P ∈ M then the notion of being a partial
order, or being dense in P are absolute (written out the formulas just involve
bounded quantifiers over P). So if D ∈M then M � “D is dense” exactly when
D really is dense. Thus the countable set {D ∈ M : D is dense} is exactly the
same collection defined in M to be the collection of all dense subsets of P. Unless
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P is something silly this will not actually be all the dense subsets, since M will
be missing some. Let us isolate a class of not-silly posets.

Definition 10.3. A poset P is separative if (1) for every p there is a q which
properly extends p (i.e. q < p) and (2) whenever p 6≤ q then there is an r ≤ p
with q ⊥ r.

Definition 10.4. A poset P is non-atomic if for any p ∈ P there exist q, r ≤
p which are incompatible.

Essentially every example of a poset that we have used thus far is separative.
Notice that every separative poset is non-atomic.

Proposition 10.5. Suppose P is non-atomic and P ∈M . Let G be P-generic.
Then G 6∈M .

Proof. Assume G ∈M and consider the set D = P \G. Then D belongs to
M . Let us see that D is dense. Let p ∈ P be arbitrary. Since P is non-atomic
there are q, r ≤ p which are incompatible. Since G is a filter, at most one of
them can belong to G and whichever one does not belongs to D.

Since D is dense and G is P-generic, G should intersect D. But that is ridicu-
lous. a

Now we will show how, given G and M , to construct M [G]. Clearly the model
M will not know about the model M [G], since G can not be defined within M .
But it will be the case that this is the only barrier. All of the tools to create
M [G] can assembled within M itself; only a generic filter G is needed to get
them to run.

Definition 10.6. We define the class of P-names by defining for each α
the P-names of name-rank α. (For a P-name τ we will use ρ(τ) to denote
the name-rank of τ). The only P-name of name-rank 0 is the empty set ∅.
And recursively, if all the P-names of name-rank strictly less than α have been
defined, we say that τ is a P-name of name-rank α if every x ∈ τ is of the form
x = 〈σ, p〉 where σ is a P-name and p ∈ P.

Another way of stating the definition is just to say that a set τ of ordered
pairs is called a P-name if it satisfies (recursively) the following property: every
element of τ has the form 〈σ, p〉 where σ is itself a P-name and p is an element
of P.

In analogy with the von Neumann hierarchy Vα, we may define

V P
0 = ∅

V P
α+1 = P(V P

α × P)

V P
γ =

⋃
α<γ

V P
α for γ limit.

Then V P
α is the set of P-names of rank < α. So the class of P-names is obtained

by imitating the construction of the whole universe V , but “tagging” all the sets
at every step, by elements of P.

It is not hard to see that the notion of being a P-name is absolute; that is,
M � “τ is a P-name” exactly when τ is a P-name. This is because the concept
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is defined by transfinite recursion from absolute concepts. As another piece of
notation, since τ is a set of ordered pairs, it makes sense to use dom(τ) as
notation for all the σ occurring in the first coordinate of an element of τ .

Definition 10.7. If M is a countable transitive model of ZFC, then MP de-
notes the collection of all the P-names that belong to M .

Alone the P-names are just words without any meaning. The people living
in M have the names but they do not know any way of giving them a coherent
meaning. But once we have a P-generic filter G at hand, they can be given
values.

Definition 10.8. Let τ be a P-name and G a filter on P. Then the value of
τ under G, denoted τ [G], is defined recursively as the set

{σ[G] : 〈σ, p〉 ∈ τ and p ∈ G}.

With this definition in mind, one can think of an element 〈σ, p〉 of a P-name τ
as saying that σ[G] has probability p of belonging to τ [G]. The fact that we are
calling the maximal element of our posets 1 makes this all the more suggestive,
for 1 belongs to every filter G. So in particular, whatever G is, if we have
τ = {〈∅, 1〉} then τ [G] = {∅}. On the other hand if τ = {〈∅, p〉} for some p
that does not belong to G then τ [G] = ∅.

Definition 10.9. If M is a countable transitive model of ZFC, P ∈ M , and
G is a filter, then M [G] = {τ [G] : τ ∈MP}.

Theorem 10.10. If G is a P-generic filter then M [G] is a countable transitive
model of ZFC such that M ⊆M [G], G ∈M [G], and M ∩On = M [G] ∩On.

Obviously M [G] is countable, since the map sending a name to its interpre-
tation is a surjection from a countable set (the names in M) to M [G]. There
are a large number of things to verify in order to prove theorem (the brunt of
the work being to check that M satisfies each axiom of ZFC), but going through
some of the verification will help us get an intuition for what exactly is going on
with these P-names.

One thing at least is not hard to see.

Lemma 10.11. M [G] is transitive.

Proof. Suppose x ∈ M [G] and y ∈ x. Then x = τ [G] for some τ ∈ MP.
By definition, every element of τ [G] has the form σ[G], where σ is a P-name.
So y = σ[G] for some σ with 〈σ, p〉 ∈ τ . As M is transitive, σ ∈ M and hence
σ ∈MP. So y = σ[G] ∈M [G]. a

Lemma 10.12. M ⊆M [G].

Proof. For each x ∈M we must devise a name x̌ so that x̌[G] = x. It turns
out we can do this independently of G. We’ve already seen how to name ∅;
∅̌ = ∅. The same idea works recursively for every x. Set x̌ = {〈y̌, 1〉 : y ∈ x}.

Then since 1 belongs to G, we have by definition that x̌[G] = {y̌[G] : y ∈ x}
which by an inductive assumption is equal to {y : y ∈ x} = x. a

Lemma 10.13. G ∈M [G].
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Proof. We must devise a name Γ so that whatever G is we have Γ[G] = G.
Set Γ = {〈p̌, p〉 : p ∈ P}. Then Γ[G] = {p̌[G] : p ∈ G} = {p : p ∈ G} = G. a

Lemma 10.14. The models M and M [G] have the same ordinals; that is, we
have M ∩On = M [G] ∩On.

Proof. We first show that for any P-name τ , rk(τ [G]) ≤ ρ(τ). We do this
by induction on τ . Suppose inductively that this holds for any P-name in the
domain of τ . Now each σ ∈ dom(τ) clearly has ρ(σ) < ρ(τ). So by induction,
each rk(σ[G]) < ρ(τ). Now τ [G] ⊆ {σ[G] : σ ∈ dom(τ)}. Since rk(τ [G]) =
sup{rk(x) + 1 : x ∈ τ [G]} and each rk(x) + 1 ≤ ρ(τ), it must be that rk(τ [G]) ≤
ρ(τ).

With that established, we show that On∩M [G] ⊆M ∩On (the other inclusion
is obvious). Let α ∈ On∩M [G]. There is some τ ∈MP so that τ [G] = α. Then
α = rk(α) = rk(τ [G]) ≤ ρ(τ). Since M is a model of ZFC, by absoluteness of
the rank function, ρ(τ) ∈ M . Since M is transitive, rk(τ [G]) belongs to M as
well. And this is just α. a

Let us play around with building sets in M [G] just a little bit more. Suppose
for example that τ [G] and σ[G] belong to M [G], so that σ, τ ∈ MP. Consider
the name up(σ, τ) = {〈σ, 1〉, 〈τ, 1〉}. Then up(σ, τ)[G] = {σ[G], τ [G]} regard-
less of what G we take, since G always contains 1. If we define op(σ, τ) =
up(up(σ, σ),up(σ, τ)) then we will always have op(σ, τ)[G] = 〈σ[G], τ [G]〉.

At this stage, a few of the axioms of ZFC are easily verified for M [G].

Lemma 10.15. We have that M [G] satisfies the axioms of extensionality, in-
finity, foundation, pairing, and union.

Proof. Any transitive model satisfies extensionality, so that’s done. Infinity
holds since ω ∈M ⊆M [G]. Foundation likewise holds, by absoluteness.

To check that M [G] satisfies pairing, we must show that given σ1[G], σ2[G]
(where σ1, σ2 belong to MP) that we can find some τ ∈ MP such that τ [G] =
{σ1[G], σ2[G]}. What we need is precisely what up(σ1, σ2) provides.

For union, we must show given σ[G] ∈M [G] that there is a τ [G] ∈M [G] such
that

⋃
σ[G] ⊆ τ [G]. Let τ = {〈χ, 1〉 : ∃π ∈ dom(σ), χ ∈ dom(π)}. We claim

that
⋃
σ[G] ⊆ τ [G]. Let x ∈

⋃
σ[G]. Then x ∈ y for some y ∈ σ[G]. By the

definition of σ[G], y = π[G] for some 〈π, p〉 ∈ σ with p ∈ G. (So π ∈ dom(σ).)
Since x ∈ π[G] there’s 〈χ, p〉 ∈ π with p ∈ G such that x = χ[G]. Then by
definition, χ[G] ∈ τ [G] as 1 ∈ G automatically. a

Notice we have not used the fact that G intersects dense subsets yet. Every-
thing we’ve done so far could have been done just for subsets of P that contain
1. But such subsets can only get us so far. Let’s see an example of what can go
wrong if we don’t require G to be generic over M .

Let P be the poset of functions p : n × n → 2 for n ∈ ω, ordered by reverse
inclusion. M is a countable transitive model, so M ∩On is a countable ordinal,
say α. Let E be a well-order of ω in order-type α. If g : ω × ω → 2 is the
characteristic function of E, then we have G = {g � n× n : n ∈ ω} is a subset of
P – indeed, it is a filter. It’s not hard to see that G is not generic over M .

Now by what we’ve shown already, G ∈M [G] and M ∩On = M [G]∩On = α.
Clearly we can’t have M [G] a model of ZFC, though, since then we could use
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G to define the relation E and take its transitive collapse, which is just α. But
α /∈M [G].

So this is one thing genericity does for us: It prevents arbitrary information
about M from being coded into the filter. We’ll see in the next section that
genericity gives a great deal more.



FORCING SUMMER SCHOOL LECTURE NOTES 31

10.2. The Forcing Relation.

Definition 10.16. The forcing language consists of the symbols of first
order logic, the binary relation symbol ∈, and constant symbols τ for each τ ∈
MP. Let φ(τ1, . . . τn) be formula of the forcing language, so that τ1, . . . τn all
belong to MP. Let p ∈ P. We say that p  φ(τ1, . . . τn) (read p forces ϕ) if for
every P-generic filter G with p ∈ G we have M [G] � φ(τ1[G], . . . τn[G]).

In order to make sense of this definition (and a few other things), let’s take a
breath and consider an example. Take P to be Fn(ω, 2), the collection of finite
functions whose domain is a subset of ω and which take values in {0, 1}. For
each n ∈ ω the set Dn = {p ∈ P : n ∈ dom(p)} is dense in P, and by absoluteness
belongs to M . Since G is P-generic, we have for each n ∈ ω that Dn ∩G is not
empty. Thus as before we can define from G a function g : ω → 2 such that
g =

⋃
G.

Once we show that M [G] is a model of ZFC it will of course follow that
g ∈ M [G] since G ∈ M [G] and g is definable from G. But we can show this
directly by devising a name ġ so that ġ[G] = g. Indeed, set

ġ = {〈 ˇ〈m,n〉, p〉 : p(m) = n}.

Then ġ[G] = { ˇ〈m,n〉[G] : p ∈ G and p(m) = n}. Since ˇ〈m,n〉[G] = 〈m,n〉, this
is exactly the canonical function defined from G.

Let us see some examples of what  means in this context. Say p is the partial
function with domain 3 such that p(0) = 0, p(1) = 1, p(2) = 2. Then, if p ∈ G it
is clear that g(1) = 1. In terms of forcing this is the same as saying

p  ġ(1̌) = 1̌.

Also notice that regardless of what G contains, g will always be a function from
ω into 2. In other words,

1  ġ : ω̌ → 2̌.

The following is an important property of .

Lemma 10.17. If p  φ(τ1, . . . , τn) and q ≤ p then q  φ(τ1, . . . , τn).

Proof. If G is P-generic with q ∈ G, then by definition of a filter p ∈ G.
Then by definition of p  φ(τ1, . . . , τn), we have M [G] � φ(τ1[G], . . . , τn[G]). a

The following theorems are the two essential tools for using forcing to prove
consistency results.

Theorem 10.18 (Forcing Theorem A). If M [G] � φ(τ1[G], . . . τn[G]) then there
is a p ∈ G such that p  φ(τ1, . . . , τn).

Theorem 10.19 (Forcing Theorem B). The relation  is definable in M . That
is, for any formula φ, there’s a formula ψ such that for all p ∈ P and τ1, . . . τn ∈
MP we have M � ψ(p, τ1, . . . , τn) exactly when p  φ(τ1, . . . τn).

Let’s take a minute to note the import of these theorems. Forcing Theorem
A states that for any sentence ϕ of the forcing language, one doesn’t need to
consult all of the filter G to see that it holds in M [G]: It is in fact guaranteed
by a single condition p ∈ G. And Forcing Theorem B states that M knows
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when a condition p guarantees ϕ in this sense. So even though almost always
G /∈ M , M can nonetheless “see” a lot of what’s going on in the extension;
and the more information the people in M have about G (in the sense of which
conditions belong to G), the more statements they can accurately predict will
hold in M [G].

We will prove these theorems in the next section. For now we use them to
finish proving Theorem 10.10. As a warm-up, we give a first example of an
argument making use of Forcing Theorem A.

Lemma 10.20. If p  (∃x ∈ σ)φ(x, τ1, . . . , τn) then there is some π ∈ dom(σ)
and some q ≤ p so that q  π ∈ σ ∧ φ(π, τ1, . . . , τn).

Proof. Let G be P-generic with p ∈ G. Since p  (∃x ∈ σ)φ(x, τ1, . . . , τn), by
definition of , M [G] � (∃x ∈ σ[G])φ(x, τ1[G], . . . , τn[G]). So take π[G] ∈ σ[G]
such that we have M [G] � φ(π[G], τ1[G], . . . , τn[G]). By definition of σ[G] we
may assume that π ∈ dom(σ). Now by Forcing Theorem A there is an r ∈ G
so that r  π ∈ σ ∧ φ(π, τ1, . . . , τn). Since r and p both belong to G, by
definition of a filter there is some q ∈ G with q ≤ p, r. By Lemma 10.17 we have
q  π ∈ σ ∧ φ(π, τ1, . . . , τn). a

Lemma 10.21. M [G] satisfies the Comprehension Axiom.

Proof. Let φ(x, v, y1, . . . yn) be a formula in the language of set theory, and
let σ[G], τ1[G], . . . , τn[G] belong to M [G]. We must show that the set

X = {a ∈ σ[G] : M [G] � φ(a, σ[G], τ1[G], . . . τn[G])}

belongs to M [G]. In other words, we must devise a name for the set. Define

ρ = {〈π, p〉 : π ∈ dom(σ), p ∈ P, p  (π ∈ σ ∧ φ(π, σ, τ1, . . . , τn))}.

By Forcing Theorem B (and Comprehension applied within M), this set actu-
ally belongs to M , being defined from notions definable in M . So ρ ∈ MP.
Let us check that ρ[G] = X. Suppose π[G] ∈ ρ[G]. By definition of our
evaluation of names under G, there is some p ∈ G such that p  π ∈ σ ∧
φ(π, σ, τ1, . . . , τn). By definition of  then we have that π[G] ∈ σ[G], and
M [G] � φ(π[G], σ[G], τ1[G], . . . τn[G]). So indeed π[G] ∈ X.

Going the other way, suppose that a ∈ X. Then a ∈ σ[G], and so by definition
of σ[G] there must be some π in dom(σ) such that a = π[G]. Also, because
a ∈ X, by definition of X we have that M [G] � φ(π[G], σ[G], τ1[G], . . . τn[G]).
Applying Forcing Theorem A tells us that there is some p ∈ G such that p 
π ∈ σ ∧ φ(π, σ, τ1, . . . , τn). So by definition of ρ, 〈π, p〉 ∈ ρ. Since p ∈ G,
π[G] ∈ ρ[G]. a

Notice how in the above proof the ρ we constructed does not at all depend on
what G actually is. This is one of the central tenets of forcing: People living in
M can reason out every aspect of M [G] if they just imagined that some generic
G existed.

Lemma 10.22. M [G] satisfies the Replacement Axiom.

Proof. Suppose φ(u, v, r, z1, . . . zn) is a fixed formula in the language of set
theory, and let σ[G], τ1[G], . . . τn[G] be such that for every x ∈ σ[G] there is a
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unique y in M [G] so that M [G] � φ(x, y, σ[G], τ1[G], . . . , τn[G]). We have to
construct a name ρ ∈MP which witnesses replacement, i.e. so that

(∀x ∈ σ[G])(∃y ∈ ρ[G])M [G] � φ(x, y, σ[G], τ1[G], . . . , τn[G]).

Apply Replacement within M together with Forcing Theorem B to find a set
S ∈M (with S ⊆MP) such that

(∀π ∈ dom(σ))(∀p ∈ P)[(∃µ ∈MP(p  φ(π, µ, τ1, . . . , τn))

→ ∃µ ∈ S(p  φ(π, µ, τ1, . . . , τn))].

Actually, what we are applying here is a stronger-looking version of replacement
(known as Collection) where we do not require the µ to be unique. In fact this
is implied by replacement (and the other axioms of ZFC); this was one of the
exercises in the problem sessions. So we apply it without too much guilt. Now
let ρ be S × {1}.

Let us see that ρ[G] is as desired. We have ρ[G] = {µ[G] : µ ∈ S}. Suppose
π[G] ∈ σ[G]. By hypothesis there is a ν[G] ∈M [G] with

M [G] � φ(π[G], ν[G], σ[G], τ1[G], . . . , τn[G]).

By Forcing Theorem A there is a p ∈ G such that p  φ(π, ν, σ, τ1, . . . , τn). So
by definition of S we can find µ in S so that p  φ(π, µ, σ, τ1, . . . , τn). Then
µ[G] ∈ ρ[G], and since p ∈ G, applying the definition of  gives

M [G] � φ(π[G], µ[G], σ[G], τ1[G], . . . , τn[G]).

a

Lemma 10.23. M [G] satisfies the Power Set Axiom.

Proof. Let σ[G] ∈M [G]. We must find some ρ ∈MP such that ρ[G] contains
all of the subsets of σ[G] that belong to M [G]. Let S = {τ ∈ MP : dom(τ) ⊆
dom(σ)}. Notice that S is actually equal to P(dom(σ) × P), relativized to M .
Let ρ = S × {1}.

Let us check that ρ is as desired. Let µ[G] ∈M [G] with µ[G] ⊆ σ[G]. Let

τ = {〈π, p〉 : π ∈ dom(σ) and p  π ∈ µ}.
Then τ ∈ S, and so τ [G] ∈ ρ[G]. Let us check that τ [G] = µ[G]. If π[G] ∈ τ [G],
then by definition of τ there is a p ∈ G so that p  π ∈ µ and so by definition
of  we have π[G] ∈ µ[G]. Going the other way, if π[G] ∈ µ[G] then by Forcing
Theorem A there is a p ∈ G such that p  π ∈ µ. Then 〈π, p〉 ∈ τ and
π[G] ∈ τ [G]. a

Lemma 10.24. M [G] satisfies the Axiom of Choice.

Proof. It is enough to show that in M [G], for every set x, there is some
ordinal α and some function f so that x is included in the range of f . For then,
we can define an injection g : x → α by letting g(z) be the least element of
f−1[{z}]. Such an injection easily allows us to well-order x.

So let σ[G] ∈M [G]. Since the Axiom of Choice holds in M , we can well-order
dom(σ), say we enumerate by {πγ : γ < α}. Let τ = {op(γ̌, πγ) : γ < α} × {1}.
Then τ [G] = {〈γ, πγ [G]〉 : γ < α} belongs to M [G], a function as desired. a

This gives us all of the axioms of ZFC, and so Theorem 10.10 is proved.
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10.3. Proving the Forcing Theorems. Recall the statements of the Forc-
ing Theorems.

Theorem 10.25 (Forcing Theorem A). M [G] |= ϕ(τ1[G], . . . , τn[G]) if and only
if (∃p ∈ G) such that p  ϕ(τ1, . . . , τn).

Theorem 10.26 (Forcing Theorem B). The relation  is definable in M . That
is, for a fixed ϕ, the class {〈p, τ1, . . . , τn〉 | p  ϕ(τ1, . . . , τn)} is definable in M .

We prove the forcing theorems by defining a version of the forcing relation
which makes no reference to M -generic filters, and so makes sense in M . We
call this relation ∗. Then Theorem B is automatically satisfied for ∗. We
prove Theorem A for ∗, and finish by showing that ∗ and  are very nearly
equivalent. This almost equivalence is enough to give Theorems A and B.

The definition of ∗ is by induction on formula complexity. The definition of
∗ for atomic formulae, e.g. σ ∈ τ , will itself be by induction on name-rank of
the names σ, τ , that is, on pairs {ρ(σ), ρ(τ)}. We therefore define ≺ to be the
lexicographical ordering on pairs of ordinals,

{α, β} ≺ {γ, δ} ⇐⇒ min{α, β} < min{γ, δ}
or min{α, β} = min{γ, δ} and max{α, β} < max{γ, δ}.

Clearly this relation on pairs is well-founded.
Suppose we are given names σ, τ ∈ MP so that the relations p ∗ σ′ ∈ τ ′,

p ∗ σ′ 6= τ ′, p ∗ ¬(σ′ ∈ τ ′), and p ∗ ¬(σ′ 6= τ ′) have already been defined for
all p ∈ P and names σ′, τ ′ with {ρ(σ′), ρ(τ ′)} ≺ {ρ(σ), ρ(τ)}. Define

p ∗ σ ∈ τ ⇐⇒ (∃q ≥ p)(∃θ) such that 〈θ, q〉 ∈ τ and p ∗ ¬(θ 6= σ);

p ∗ σ 6= τ ⇐⇒ (∃q ≥ p)(∃θ) such that either

〈θ, q〉 ∈ σ and p ∗ ¬(θ ∈ τ), or

〈θ, q〉 ∈ τ and p ∗ ¬(θ ∈ σ);

p ∗ ¬ϕ ⇐⇒ (∀q ≤ p)q 6∗ ϕ.
Note that in each case the name-rank of θ is less than one of σ, τ so the inductive
definition makes sense.

To finish the definition of ∗ we just inductively define

p ∗ ϕ ∨ ψ ⇐⇒ p ∗ ϕ or p ∗ ψ;

p ∗ ∃xϕ ⇐⇒ there is some τ such that p ∗ ϕ(τ)

and continue to use the same definition of negation given above.
We have really only defined the relation ∗ for sentences built up using names

and the symbols ∈, 6=,¬,∨, and ∃. Let us say such a sentence is in the forcing∗

language. Whenever we discuss the relation ∗, we restrict ourselves to formu-
las in this language. Since every formula in the full forcing language is clearly
equivalent to one in the forcing∗ language, this will be sufficient.

Proposition 10.27. If p ∗ ϕ and r ≤ p, then r ∗ ϕ.

Proof. The proof is by induction on formula complexity. We prove it first
for atomic forcing∗ formulas and their negations; this step will be by induction
on pairs of name-ranks.
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So suppose r ≤ p where p ∗ σ ∈ τ , and inductively, that we have proved the
proposition for formulas of the form σ′ ∈ τ ′, σ′ 6= τ ′, ¬(σ′ ∈ τ ′), ¬(σ′ 6= τ ′),
whenever {ρ(σ′), ρ(τ ′)} ≺ {ρ(σ), ρ(τ)}. By definition of ∗,

(∃q ≥ p)(∃θ)〈θ, q〉 ∈ τ and p ∗ ¬(θ 6= σ).

Since ρ(θ) < ρ(τ), we have by inductive hypothesis that r ∗ ¬(θ 6= σ). Since
q ≥ r, we clearly have r ∗ σ ∈ τ as needed.

The proof for σ 6= τ is similar; and the result is immediate by definition of ∗

for formulas built from ¬. The cases for ∨ and ∃ are straightforward. a
We want to prove Theorem A for ∗. We make use of a non-intuitive sub-

lemma.

Lemma 10.28 (Non-intuitive sublemma). Suppose Theorem A holds for ϕ. Then
for all M -generic G,

(∃q ∈ G)(∃σ)〈σ, q〉 ∈ τ and M [G] |= ϕ

if and only if

(∃p ∈ G)(∃q ≥ p)(∃σ) such that 〈σ, q〉 ∈ τ and p ∗ ϕ.

Proof. For the forward direction, if q ∈ G and σ are such that 〈σ, q〉 ∈ τ and
M [G] |= ϕ, then by Theorem A, let p ∈ G be such that p ∗ ϕ. Since G is a
filter and by the last proposition, we may assume p ≤ q, just what we need.

Conversely, if p ∈ G and q ≥ p with 〈σ, q〉 ∈ τ and p ∗ ϕ, then by Theorem
A, M [G] |= ϕ, and by upwards closure of G, we have q ∈ G. a

Proof of Theorem A for ∗. As mentioned above, we consider only for-
mulas ϕ of the forcing∗ language. We prove it first for atomic formulas by
induction on pairs of ranks. Assume for some σ, τ we have proved Theorem
A for all statements of the form σ′ 6= τ ′, σ′ ∈ τ ′ and their negations, when
{ρ(σ′), ρ(τ ′)} ≺ {ρ(σ), ρ(τ)}.

(∃p ∈ G)p ∗ σ ∈ τ ⇐⇒ (∃p ∈ G)(∃q ≥ p)(∃θ)〈θ, q〉 ∈ τ and p ∗ ¬(θ 6= σ)

⇐⇒ (∃q ∈ G)(∃θ)〈θ, q〉 ∈ τ and M [G] |= θ[G] = σ[G]

⇐⇒M [G] |= σ[G] ∈ τ [G].

Here the first equivalence is by the definition of ∗; the second is by the non-
intuitive sublemma plus the inductive hypothesis; the third by definition of τ [G].

(∃p ∈ G)p ∗ σ 6= τ ⇐⇒ (∃p ∈ G)(∃q ≥ p)(∃θ) either

〈θ, q〉 ∈ τ and p ∗ ¬(θ ∈ σ), or

〈θ, q〉 ∈ σ and p ∗ ¬(θ ∈ τ)

⇐⇒ (∃q ∈ G)(∃θ)〈θ, q〉 ∈ τ and M [G] |= θ[G] /∈ σ[G], or

(∃q ∈ G)(∃θ)〈θ, q〉 ∈ σ and M [G] |= θ[G] /∈ τ [G]

⇐⇒M [G] |= σ[G] 6= τ [G].

First equivalence by definition of ∗, and the second by the non-intuitive sub-
lemma and inductive hypothesis.

Claim. (∃p ∈ G)p ∗ ¬ϕ if and only if it is not the case that (∃p ∈ G)p ∗ ϕ.
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Proof. It’s enough to show for all ϕ andG that exactly one of (∃p ∈ G)p ∗ ϕ
or (∃p ∈ G)p ∗ ¬ϕ holds. At least one holds, since using the definability of ∗,

D = {p | p ∗ ϕ or p ∗ ¬ϕ}
belongs to M , and is dense. So G ∩D 6= ∅ is enough.

Next, at most one can hold: if p ∗ ϕ, q ∗ ¬ϕ with p, q ∈ G, then let r ∈ G
with r ≤ p, q. Then r ∗ ϕ and r ∗ ¬ϕ; but this contradicts the definition of
∗ and negation. a
So

(∃p ∈ G)p ∗ ¬ϕ ⇐⇒ not (∃p ∈ G)p ∗ ϕ

⇐⇒ not M [G] |= ϕ

⇐⇒ M [G] |= ¬ϕ.
The first equivalence by the claim; the second by inductive hypothesis.

(∃p ∈ G)p ∗ ϕ ∨ ψ ⇐⇒ (∃p ∈ G)p ∗ ϕ or p ∗ ψ

⇐⇒ (∃p ∈ G)p ∗ ϕ or (∃p ∈ G)p ∗ ψ

⇐⇒ M [G] |= ϕ or M [G] |= ψ

⇐⇒ M [G] |= ϕ ∨ ψ.
The third equivalence by inductive hypothesis.

(∃p ∈ G)p ∗ ∃xϕ ⇐⇒ (∃p ∈ G) for some τ ∈MP, p ∗ ϕ(τ)

⇐⇒ for some τ, M [G] |= ϕ(τ [G])

⇐⇒ M [G] |= ∃xϕ(x).

This completes the proof of Theorem A for ∗. a

Claim. For all ϕ, p  ϕ iff p ∗ ¬¬ϕ.

Proof. Note once again that ϕ is a formula in the forcing∗ language.
For the forward direction, assume p  ϕ, and p 6∗ ¬¬ϕ. So (∃q ≤ p)q ∗ ¬ϕ.

Let G be M -generic with q ∈ G. Note p ∈ G. So M [G] |= ϕ, but M [G] |= ¬ϕ
since q ∈ G by Theorem A for ∗.

For the converse, assume p ∗ ¬¬ϕ, and let G be M -generic with p ∈ G. By
Theorem A for ∗, M [G] |= ¬¬ϕ. So M [G] |= ϕ. a
Note this proves the forcing theorems for the relation . For we may let ϕ 7→ ϕ∗

be some simple translation of formulas of the forcing language into equivalent
ones of the forcing∗ language; for example, that induced by (σ = τ)∗ ≡ ¬(σ 6= τ),
(∀xϕ(x))∗ ≡ ¬∃x¬(ϕ(x))∗, (ϕ ∧ ψ)∗ ≡ ¬(¬ϕ∗ ∨ ¬ψ∗). Then p  ϕ if and only
if p  ϕ∗ if and only if p ∗ ¬¬ϕ∗, and this last relation is definable in M .
Taking this to be our official definition of , we have Theorem B immediately,
and Theorem A follows from Theorem A for ∗.


