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§11. The independence of CH. As advertised we will prove the indepen-
dence of CH from the axioms of ZFC. As we saw when we discussed formal
proofs and model theory, it is enough to construct two models of ZFC, one in
which CH holds and the other in which it fails. Of course, to do so we will need to
assume the consistency of ZFC in addition to the axioms of ZFC, since otherwise
there may not even be a model of ZFC to begin with; thus the independence of
CH is a relative consistency result, in the sense that if ZFC is consistent, then
so are each of the theories ZFC + CH and ZFC +¬CH.

In fact, we use a bit more than consistency: We will assume that there is a
transitive model of ZFC, which a bit stronger than just the existence of a model
of ZFC. This assumption can be done away with, however, by dealing with large
enough finite fragments of ZFC and using the reflection theorem.

For example, suppose towards a contradiction ZFC ` CH; then there is some
finite fragment T of ZFC so that T ` CH. Using the forcing theorems, we know
there is a finite theory T ′ so that whenever M is a countable transitive model
of T ′, P ∈M , and G is P-generic over M , then M [G] satisfies T (essentially, T ′

needs to be large enough to ensure existence of the appropriate names for objects
and that the needed instances of the forcing theorems hold in M). Furthermore
(as we see later) an appropriate choice of poset P will ensure M [G] |= ¬CH. But
then by the reflection and Mostowski Collapse theorems, there is a countable
transitive model M of T ′, hence also a model M [G] of T + ¬CH, contradicting
our choice of T .

So in all of our forcing arguments we will just work with a transitive model of
full ZFC, because we know that there is a standard way to do without it.

One more note on a common theme in forcing arguments. In general it is a
bad idea to collapse ω1. What is meant by this is we do not want to pass to
a generic extension M [G] in which there is a function f : ω → ωM1 which is
surjective. From the point of view of such an extension M [G], the ω1 in M is a
countable ordinal, and this is precisely the sort of disturbance to the universe of
M that we wish to avoid.

We will see two methods for arguing that ω1 is not collapsed. The key idea
is to prove some property of the poset used in forcing. The first idea which we
have already seen is the notion of chain condition. The second idea which we
have not yet seen is the notion of closure.

11.1. The consistency of CH. We wish to construct a model of ZFC + CH
by forcing. Given a countable transitive model M of ZFC we describe a poset

P such that whenever G is P-generic, ωM1 = ω
M [G]
1 and M [G] � CH. The poset

is easy to describe. We let P = {p | p : α → 2 for some countable ordinal α}
ordered by extension, i.e. p1 ≤ p2 if and only if p1 ⊇ p2.

To show that ω1 is preserved we develop the notion of closure of a poset.

Definition 11.1. Let P be a poset. P is countably closed if for every se-
quence of elements 〈pn | n < ω〉 of P such that pn+1 ≤ pn for all n, there is p ∈ P
such that p ≤ pn for all n.

It is clear from the definition of P that it is countably closed; we just take the
union of the conditions.
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Lemma 11.2. If P is a countably closed poset and G is P-generic over M , then

ωM1 = ω
M [G]
1 .

Proof. Assume for a contradiction that there is some p ∈ P and a P-name
ḟ which is forced by p to be a function from ω onto ωM1 . Let n < ω; we claim

that Dn = {p ∈ P | p 
 ḟ(n) = α̌ for some α < ω1} is dense in P. Let p ∈ P and
let G be P-generic with p ∈ G. In M [G] there is an ordinal α < ωM1 such that

ḟ [G](n) = α. Choose p′ ∈ G forcing that ḟ(n) = α̌. Since G is a filter we can
choose p′′ ≤ p′, p. Clearly p′′ ∈ Dn.

By induction build a decreasing sequence of elements of P. Let p0 = p. Given
pn let pn+1 ∈ Dn with pn+1 ≤ pn and record the value αn witnessing pn+1 ∈ Dn.
Let pω ≤ pn for all n, by the countable closure of P. Let α = supαn. Let H be
P-generic over M . Then in M [H], the range of ḟ [H] is bounded by α; but this
is a contradiction since it was supposed to be forced by p ≥ pω ∈ H that f was
onto. a

A similar argument shows the following.

Lemma 11.3. If P is countably closed, then whenever G is P-generic over M ,
P(ω)M = P(ω)M [G].

Proof. Exercise. a
There is a general phenomenon occurring in the previous proof. Suppose that

ẋ is a P-name for an element of M . We say that a condition p decides the
value of ẋ if it forces ẋ = y̌ for some y ∈M . The collection of conditions which
decide the value of such an ẋ is always dense.

Next we show the following.

Lemma 11.4. If G is P-generic where P = {p | p : α → 2 for some α < ω1}
ordered by extension, then M [G] � CH.

Proof. Using the generic object G we define a list of ω
M [G]
1 = ωM1 -many

subsets of ω. We then do a density argument to show that this list comprises all
subsets of ω in M [G]. Work for the moment in M [G]. Let g =

⋃
G. Note that g

is a function from ω1 to 2. We define a collection of subsets of ω, {xα | α < ω1},
by n ∈ xα if and only if g(ω · α+ n) = 1.

By the previous lemma it is enough to show that for every x ∈ (P(ω))M , there
is an α such that x = xα. For this we will do a density argument. Work in
M and let x ⊆ ω. We claim Dx = {p ∈ P | there is α < ω1 such that for all
n, χx(n) = p(ω · α + n)} is dense. (Here χx is the characteristic function of
x.) Let p ∈ P. Let dom(p) = β. Let α > β. It follows that for all n < ω,
ω · α + n /∈ dom(p). So we extend p to a condition p′ in Dx where α is the
witness.

It follows that in M [G] the map α 7→ xα is a surjection from ω1 onto P(ω). a
So we have proved that ZFC + CH is consistent.
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11.2. The consistency of ¬CH. In this section we prove that there is a

poset P such that whenever M � CH and G is P-generic, ωM1 = ω
M [G]
1 and

M [G] � 2ω = ω2. Again the poset is easy to describe. We let P = {p | there is
x ⊆ ω2 finite such that p : x→ 2} ordered by extension.

We will show that this forcing preserves all cardinals by showing that it has
the countable chain condition. Before showing that P is ccc, we show that any
forcing which has the ccc preserves all cardinals.

Lemma 11.5. Suppose that P is a ccc poset. Whenever G is P-generic over
M and κ is an ordinal, M � “κ is a cardinal” if and only if M [G] � “κ is a
cardinal”.

Proof. Let G be P-generic over M and κ be an ordinal. Notice that the
reverse direction is clear. So suppose that M � κ is a cardinal, but M [G] � κ is

not a cardinal. Then there is a name ḟ such that ḟ [G] is a surjection from some
α < κ onto κ. We fix a condition p0 ∈ G forcing this.

For every β < α, the collection Dβ = {p ∈ P | p decides ḟ(β)} is dense

below p0, since ḟ(β) is forced by p0 to be an ordinal. So if we choose Aβ ⊆ Dβ

a maximal antichain, then there is a countable set of ordinals Xβ such that

whenever p ∈ Aβ there is an ordinal γ ∈ Xβ such that p 
 ḟ(β) = γ. But this

means that p0 
 ran(ḟ) ⊆
⋃
β<αXβ and the right hand union has size at most

ω · |α| < κ, contradicting that p0 forces that ḟ is onto κ. a
We now recall some homework problems which will be used in showing that P

is ccc.
Let κ be a regular cardinal.

Definition 11.6. A set C ⊆ κ is club if it is unbounded in κ and for all
α < κ if C ∩ α is unbounded in α, then α ∈ C.

Lemma 11.7. The collection of club subsets of κ form a κ-complete filter.

Recall that a filter is κ-complete if it is closed under intersections of size less
than κ.

Definition 11.8. A set S ⊆ κ is stationary if for every club C in κ, S∩C 6=
∅.

Lemma 11.9. Let S be a stationary set. If F : S → κ is a function such
that F (α) < α for all α ∈ S, then there is a stationary S′ ⊆ S on which F is
constant.

Lemma 11.10. If S is stationary in κ, then S is unbounded in κ.

We are now ready to prove the key lemma which will be used in the proof
that P is ccc. We prove a weak version of this lemma which is strong enough
for our application. The proof we have chosen is one that generalizes to more
complicated versions of the lemma.

Lemma 11.11 (The ∆-system lemma). Let X be a set of size ω1 and {xα |
α < ω1} be a collection of finite subsets of X. There are an unbounded I ⊆ ω1

and a finite r ⊆ X such that for all α, β ∈ I, xα ∩ xβ = r.
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The collection of sets {xα | α ∈ I} forms a ∆-system with root r.

Proof. First note that it is enough to show the lemma in the case X = ω1.
Since for an arbitrary X of size ω1 we can use a bijection with ω1 to copy the
problem. So let {xα | α < ω1} be a collection of finite subsets of ω1.

We define a function F : Lim(ω1) → ω1 by F (α) = max(xα ∩ α). Since each
α is finite, we have F (α) < α for all limit ordinals α. It follows that there are
S ⊆ Lim(ω1) and δ < ω1 such that for all α ∈ S, F (α) = δ. Since there are only
countably many finite subsets of δ, we can choose J ⊆ S unbounded and a finite
r ⊆ δ such that for all α ∈ J , xα ∩ δ = r.

Finally we construct I an unbounded subset of J by recursion. Suppose that
we have constructed an enumeration γα of I for all α < β. The set

⋃
α<β xγα is

countable and hence bounded in ω1 by some ordinal η < ω1. Let γβ be the least
member of J greater than η.

Now we claim that {xα | α ∈ I} forms a ∆-system with root r. Let α <
β < ω1. We will show that xγα ∩ xγβ = r. By the choice of γβ , xγα ⊆ γβ . So
xγα ∩ xγβ = xγα ∩ xγβ ∩ γβ . But xγβ ∩ γβ = xγβ ∩ δ = r. So we are done. a

Recall the definition of P. P = {p | there is a finite x ⊆ ω2 such that p : x→ 2}
ordered by extension.

Lemma 11.12. P has the ℵ1-Knaster property.

Proof. Let {pα | α < ω1} be a sequence of conditions in P. For each α < ω1,
let xα = dom(pα) and let X =

⋃
α<ω1

xα. By the ∆-system lemma, there are

an unbounded I ⊆ ω1 and a finite set r ⊆ X such that {xα | α ∈ I} forms a
∆-system with root r.

Since there are only finitely many functions from r to 2, we can assume that
for all α, β ∈ I, pα � r = pβ � r. It follows that for α, β ∈ I, pα∪pβ is a condition,
so we are done. a

Lemma 11.13. If G is P-generic over M , then M [G] � 2ω ≥ ω2.

Proof. The argument is a straightforward density argument. Work in M [G]
and let g =

⋃
G. We define a collection of functions fα : ω → 2 for α < ω2

by fα(n) = 1 if and only if g(ω · α + n) = 1 (note that ωM2 = ω
M [G]
2 since the

forcing is ccc). We claim that for each pair α < β < ω2, the set Dα,β = {p |
there is n such that p(ω · α + n) 6= p(ω · β + n)} is dense. This is an argument
that we have seen many times. Given a p ∈ P, there is n < ω such that
ω ·α+ n /∈ dom(p), so we are free to extend p to p′ ∈ Dα,β . Since G∩Dα,β 6= ∅
for all α < β < ω2, the collection {fα | α < ω2} is a set of ω2 many functions in
ω2. So M [G] � 2ω ≥ ω2. a

We have shown that CH fails in M [G] whenever G is P-generic over M . We
conclude by computing the value of 2ω in the extension.

Lemma 11.14. Let P be a poset and let ḟ be a P-name for a function from ω to
2. There is a sequence in M of functions hn : An → 2 for n < ω, where each An
is a maximal antichain in P, such that whenever G is P-generic, ḟ [G](n) = hn(p)
where p is the unique element of G ∩An.
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Proof. For each n < ω choose a maximal antichain An of elements which
decide the value of ḟ(n). Choose hn(p) to be the unique element of 2 which p

decides to be the value of ḟ(n). The conclusion is clear. a

Lemma 11.15. If M � 2ω ≤ ω2 and G is P-generic, then M [G] � 2ω ≤ ω2.

Proof. Let G be P-generic. Every f ∈ (2ω)M [G] is coded by a sequence of
functions as in the previous lemma. It is enough to count the number of such
sequences of functions. To determine such a sequence of functions it is enough
to choose an ω sequence of maximal antichains and an ω-sequence of elements
of (2ω)M . So we have at most (ω2

ω)ω · (2ω)ω ≤ ω2 objects. a


