FORCING EXERCISES – WEEKEND 1

Exercise -1. Get some rest.

Exercise 0. Make sure you know how to do the exercises assigned during the week.

Exercise 1. Prove that $\mathfrak{s} \leq \mathfrak{d}$.

Exercise 2. Suppose that X is uncountable and $[X]^2$ is 2-colored. Must there be an uncountable monochromatic set?

Exercise 3. Construct a non-Ramsey ultrafilter on ω .

Definition. A set $X \subseteq \mathbb{R}$ has measure zero iff for all $\epsilon > 0$ there are countably many open intervals I_n such that the diameter of I_n is less than $\epsilon/2^n$ and $X \subseteq \bigcup_{n < \omega} I_n$. (Make sure you believe this before proceeding!)

A set $X \subseteq \mathbb{R}$ is said to have **strong measure zero** iff for every sequence $\langle \epsilon_n \rangle_{n < \omega}$ of positive reals ϵ_n , there is a countable sequence $\langle I_n : n < \omega \rangle$ of open intervals such that the diameter of I_n is less than ϵ_n and $X \subseteq \bigcup_{n < \omega} I_n$.

Exercise 4.

- (a) Convince yourself that the proof that \mathbb{Q} has measure zero shows that \mathbb{Q} also has strong measure zero.
- (b) Prove that the Cantor set doesn't have strong measure zero.
- (c) Prove that CH implies that there is an uncountable set of strong measure zero.
- (d) (*) Prove that MA implies that there is an uncountable set of strong measure zero.
- (e) (*) Prove that, on the other hand, MA implies that every set of size $< 2^{\aleph_0}$ does have strong measure zero.

Exercise 5 (if you know some topology). Suppose that X is a topological space, F is a filter on X, and x is a point in X. We say that F converges to x, and write $F \rightarrow x$, if every open neighborhood of x belongs to the filter F.

- (a) Let $B \subseteq X$. Prove that $x \in \overline{B}$ iff there is a filter F on X such that $B \in F$ and $F \to x$.
- (b) Prove that X is compact iff every ultrafilter on X converges to at least one point.
- (c) Prove that X is Hausdorff iff every ultrafilter on X converges to at most one point.
- (d) Use filter-convergence and the Axiom of Choice to prove Tychonoff's theorem, that an arbitrary product of compact spaces is compact.¹
- (e) Prove (in ZF) that Tychonoff's theorem implies AC. (Tricky, but not as difficult as you'd think.)

Date: 16 July 2016.

¹Your proof should give a proof of Tychonoff's theorem for Hausdorff spaces using the ultrafilter lemma only (not the full Axiom of Choice).